「Agent不稀奇,能“自己想、自己干、自己复盘”的才是好Agent」可一到落地,名词、框架和坑一起涌来:设计模式、强自治、可控流程、多代理协作… 到底该不该用 Agent?该选哪一类框架?需要用到什么程度?这篇文章用直观的图表、清晰的示例,为你讲清什么是Agent、什么场景适合使用Agent以及各类主流Agent框架,希望能帮各位少走弯路,迅速判断技术路径。

1.Workflow和Agent的区别

在这里插入图片描述

2.Agent框架选择

核心依赖Github上Star数以及市场热度,综合选取5款Agent框架:

1.AutoGPT: Github 17.8w Star

2.LangGraph: Github 13.1w Star

3.Dify: Github 11.2w Star

4.CrewAI: Github 3w Star

5.AutoGen: 微软开源 Github 5w Star

3.各Agent框架对比结论

在这里插入图片描述

在这里插入图片描述

4.为什么需要使用Agent框架

结论: 只要“问题不可完全穷举、要跨多系统查证、并且需要在对话中澄清/协商/决策”,就更应该用 Agent 框架,而不是纯 Workflow。

为什么?用一个真实的ToC场景客服链路来说明。

4.1纯 Workflow 在智能客服里的“天花板”

Workflow(无论是 Dify 的可视化编排,还是 LangGraph 的状态机)非常适合步骤确定 + 条件有限的流程,比如:

1.查询订单 → 格式化答复

2.退货→生成标签→发通知

3.FAQ 检索→返回片段

一旦进入长尾问题,Workflow 就会遇到“分支爆炸”:

例: 同一条“包裹没到”诉求,可能要综合 ①承运商状态 ②发货 SLA ③节假日政策 ④地址异常 ⑤是否会员 ⑥是否已报缺货 ⑦是否已部分签收 ⑧是否叠加优惠券/补发 等。

如果你用固定分支描述:

假设有 5 个意图 × 6 种物流状态 × 3 种用户等级 × 3 个政策时段(平日/大促/假期) × 3 种地理区域,共5×6×3×3×3=810 条潜在路径。

这还没算异常(报损、拒收、欺诈信号)与“对话澄清”的分支。维护成本和上线速度都会被拖垮。此外,Workflow 对 对话中的“澄清—再决策—再行动 并不天然友好,需要把每一步提问、回答、重试都画成节点,复杂而脆弱。

4.2Agent 框架解决的核心问题

以 AutoGen/CrewAI 这类 Agent 框架为例,它们把“在对话里动态规划与调用工具”作为第一性能力:

场景: 用户说“我 8 月 1 号下的单今天还没到,收件地址其实要换,而且我被重复扣费了。”

一个合格的客服 Agent 团队会做什么?

1.意图识别 + 澄清

● Planner Agent:拆出多意图(物流异常、改址、计费异常),先问关键澄清(订单号/新地址/扣费凭证)。

2.跨系统取证

● OMS/物流工具:查轨迹与 SLA;

● 计费/支付工具:核对重复扣款交易;

● CRM:看是否 VIP、是否有历史补偿记录。

3.政策推理与合规

● Policy/Critic Agent:套用“假期延误 + VIP + 改址”的组合条款,评估可给的补偿区间、是否可免费改址、是否触发风控人工复核。

4.方案生成与协商

● 提出“改址 + 走加急补发 / 或原包裹拦截 + 退款差额 + 账单冲正”的可行方案,并在对话中按用户反馈实时调整。

5.执行与闭环

● 调用工单/票据工具,落账/发券/改单/寄件,写入 CRM 备注;

● 生成总结,告知时限与跟踪号;

● 若任一步失败,自动选择备选策略或升级人工。

这些动作里,很多步骤**无法事先“画”成固定分支,需要在对话上下文里做决策、需要跨工具动态组合、需要“问一句 → 查一下 → 再决定”,**这正是 Agent 的强项。

5.各Agent详细介绍

5.1AutoGPT

简介: AutoGPT是第一个爆火的自主AI Agent框架,提供一系列工具让用户构建和使用自治代理。其功能涵盖代理创建模块“Forge”、性能评测基准agbenchmark、排行榜以及易用的UI和CLI接口。

主要特点: AutoGPT支持“思考-行动-反馈-学习”的循环,让代理不断生成子任务并执行。并且拥有丰富的插件和工具接口,允许代理访问浏览器、文件系统、API等资源,从而完成复杂的链式任务。

典型应用场景: 需要让Agent自动拆解目标并执行的,如市场调研、行程规划、代码编写等

优势与不足:

使用示例:基于AutoGPT让Agent帮我写一篇介绍AutoGPT的文章

1.创建Agent及配置名称、角色以及目标

2.Agent 自主思考、规划、执行

3.最终输出

5.2LangGraph

简介:LangGraph 是由 LangChain 团队推出的有状态、持久运行、多智能体应用的编排框架。核心将Agent建模成一个图(Graph):每个节点是计算步骤(LLM 调用、工具函数、任意 Python 代码等),边控制流转(含条件与循环),并最终实现既定目标。并且在今年6月提供了预构建模式,对常见的多智能体场景提供了抽象封装,开发者只需定义少量参数(如参与的子智能体、主体提示词等)即可快速生成完整的多 Agent 协作系统。

Graph和预构建模式的示意图:

主要特点: 支持图式编排、可人工干预、可中断/续跑。LangGraph可形成可控的分支/循环流程,可在每个节点中加入人工干预环节,适合需要人工审批/修订的业务场景,并且基于持久化状态可方便中断、续跑、回溯。

典型应用场景: 可明确拆解任务步骤的场景,如RAG类、文章生成、日程助手等。

优势与不足:

使用示例:基于LangGraph让Agent帮我写一篇介绍LangGraph的文章

1.构建工作流(Workflow)

附工作流运行逻辑:

2.最终输出

5.3Dify

简介: Dify(Do It For You)是一个开源的低代码平台,旨在简化大模型(LLM)驱动的AI应用开发与部署。它融合了“后端即服务 (BaaS)”与 LLMOps 概念,提供涵盖模型接入、提示设计、知识库检索、智能代理、数据监控等在内的一站式解决方案。通过直观的可视化界面和预构建组件,开发者和非技术人员都可以快速构建如聊天机器人、内容生成、数据分析等各类生成式AI应用。

主要特点: 低代码、可视化工作流构建、检索增强生成(RAG)管道、开放工具市场

典型应用场景: 可明确拆解任务步骤的场景,如RAG类、文章生成、日程助手等

使用示例:

1.工作流Workflow类型

2.Agent类型(Function Call)

5.4CrewAI

简介: CrewAI 是一个多智能体(multi-agent)编排框架,其核心理念是让多个具备特定角色的 AI 代理协同合作(组成“crew”团队)来完成复杂任务。每个代理被赋予特定的角色、目标和背景知识,通过相互分工与配合,自动地进行任务委派和问询,最终以团队形式完成用户交给的工作。

主要特点: 多工具及生态集成、支持Workflow和AI Agent两种模式

优势与不足:

使用示例:研究AI****agent领域的最新进展

5.5AutoGen

简介: AutoGen 是微软开源的一个面向 Agentic AI(代理式人工智能)的编程框架,用于构建 AI 智能体并促进多个智能体协作完成复杂任务。AutoGen 支持事件驱动的分布式架构,具有良好的可扩展性和弹性,可用于搭建可自主行动或在人类监督下运行的多代理 AI 系统。

**主要特点:**微软开源、原生多Agent支持、灵活对话控制

优势与不足:

Swarm模式下的机票退订助手示例:

6.总结

本篇文章主要介绍了目前 WorkFlow 和 Agent 的区别,以及什么时候应该采用 Agent 框架:当问题复杂、长尾且多变,Agent 才是主力。同时也简要的介绍了目前几类框架如AutoGPT、LangGraph、Dify、CrewAI、AutoGen,希望能在技术路线的选择与框架选型上帮助到各位读者。

普通人如何抓住AI大模型的风口?

领取方式在文末

为什么要学习大模型?

目前AI大模型的技术岗位与能力培养随着人工智能技术的迅速发展和应用 , 大模型作为其中的重要组成部分 , 正逐渐成为推动人工智能发展的重要引擎 。大模型以其强大的数据处理和模式识别能力, 广泛应用于自然语言处理 、计算机视觉 、 智能推荐等领域 ,为各行各业带来了革命性的改变和机遇 。

目前,开源人工智能大模型已应用于医疗、政务、法律、汽车、娱乐、金融、互联网、教育、制造业、企业服务等多个场景,其中,应用于金融、企业服务、制造业和法律领域的大模型在本次调研中占比超过 30%。
在这里插入图片描述

随着AI大模型技术的迅速发展,相关岗位的需求也日益增加。大模型产业链催生了一批高薪新职业:
在这里插入图片描述

人工智能大潮已来,不加入就可能被淘汰。如果你是技术人,尤其是互联网从业者,现在就开始学习AI大模型技术,真的是给你的人生一个重要建议!

最后

只要你真心想学习AI大模型技术,这份精心整理的学习资料我愿意无偿分享给你,但是想学技术去乱搞的人别来找我!

在当前这个人工智能高速发展的时代,AI大模型正在深刻改变各行各业。我国对高水平AI人才的需求也日益增长,真正懂技术、能落地的人才依旧紧缺。我也希望通过这份资料,能够帮助更多有志于AI领域的朋友入门并深入学习。

真诚无偿分享!!!
vx扫描下方二维码即可
加上后会一个个给大家发

在这里插入图片描述

大模型全套学习资料展示

自我们与MoPaaS魔泊云合作以来,我们不断打磨课程体系与技术内容,在细节上精益求精,同时在技术层面也新增了许多前沿且实用的内容,力求为大家带来更系统、更实战、更落地的大模型学习体验。

图片

希望这份系统、实用的大模型学习路径,能够帮助你从零入门,进阶到实战,真正掌握AI时代的核心技能!

01 教学内容

图片

  • 从零到精通完整闭环:【基础理论 →RAG开发 → Agent设计 → 模型微调与私有化部署调→热门技术】5大模块,内容比传统教材更贴近企业实战!

  • 大量真实项目案例: 带你亲自上手搞数据清洗、模型调优这些硬核操作,把课本知识变成真本事‌!

02适学人群

应届毕业生‌: 无工作经验但想要系统学习AI大模型技术,期待通过实战项目掌握核心技术。

零基础转型‌: 非技术背景但关注AI应用场景,计划通过低代码工具实现“AI+行业”跨界‌。

业务赋能突破瓶颈: 传统开发者(Java/前端等)学习Transformer架构与LangChain框架,向AI全栈工程师转型‌。

image.png

vx扫描下方二维码即可
在这里插入图片描述

本教程比较珍贵,仅限大家自行学习,不要传播!更严禁商用!

03 入门到进阶学习路线图

大模型学习路线图,整体分为5个大的阶段:
图片

04 视频和书籍PDF合集

图片

从0到掌握主流大模型技术视频教程(涵盖模型训练、微调、RAG、LangChain、Agent开发等实战方向)

图片

新手必备的大模型学习PDF书单来了!全是硬核知识,帮你少走弯路(不吹牛,真有用)
图片

05 行业报告+白皮书合集

收集70+报告与白皮书,了解行业最新动态!
图片

06 90+份面试题/经验

AI大模型岗位面试经验总结(谁学技术不是为了赚$呢,找个好的岗位很重要)图片
在这里插入图片描述

07 deepseek部署包+技巧大全

在这里插入图片描述

由于篇幅有限

只展示部分资料

并且还在持续更新中…

真诚无偿分享!!!
vx扫描下方二维码即可
加上后会一个个给大家发

在这里插入图片描述

Logo

有“AI”的1024 = 2048,欢迎大家加入2048 AI社区

更多推荐