AI大模型微调究竟是什么?一文说清核心原理与作用
只要你真心想学习AI大模型技术,这份精心整理的学习资料我愿意无偿分享给你,但是想学技术去乱搞的人别来找我!在当前这个人工智能高速发展的时代,AI大模型正在深刻改变各行各业。我国对高水平AI人才的需求也日益增长,真正懂技术、能落地的人才依旧紧缺。我也希望通过这份资料,能够帮助更多有志于AI领域的朋友入门并深入学习。真诚无偿分享!!!vx扫描下方二维码即可加上后会一个个给大家发。
技术干货丨AI 大模型微调到底是什么?一篇通俗文帮你弄明白
什么是微调?
微调就是在已经训练好的大模型基础上,用你自己的数据继续训练,让模型更符合你的特定需求。

CPT(ContinualPre-Training)继续预训练最基础的微调方式。你拿到一个预训练好的模型,然后用大量无标签的文本数据继续训练它。
SFT(Supervised Fine-Tuning)监督微调最常用的微调方式。你准备好问题-答案对,教模型如何回答特定类型的问题。
DPO(Direct Preference Optimization)偏好训练最新的微调技术,通过对比“好答案“和“坏答案"来训练模型。

三种微调方式详解
PT(Continued Pre-Training,继续预训练)
通过无标注数据进行无监督继续预训练,强化或新增模型特定能力。
数据要求
需要大量文本数据(通常几GB到几十GB)数据质量要高,最好是你目标领域的专业内容
适用场景
让模型学习特定领域的知识,比如医学、法律、金融
增强模型对某种语言或方言的理解
让模型熟悉你所在行业的专业术语

SFT(Supervised Fine-Tuning)监督微调
有监督微调,增强模型指令跟随的能力,提供全参和高效训练方式。
数据要求
通常需要几千到几万条高质量的问答对
答案要准确、风格统一

适用场景
训练客服机器人
创建特定任务的助手(比如代码助手、写作助手)
让模型学会特定的对话风格

DPO(Direct Preference Optimization)偏好训练
引入负反馈,降低幻觉,使得模型输出更符合人类偏好
工作原理
给模型同一个问题的两个不同答案
告诉模型哪个答案更好
模型学会倾向于生成更好的答案

适用场景
让模型的回答更符合人类偏好
减少有害内容的生成
提高回答的质量和安全性

非必要不微调
1.成本高:需要大量GPU资源和时间
2.技术门槛高:需要懂机器学习、数据处理、模型训练
3.数据要求严格:需要高质量、大量的训练数据4.维护复杂:模型更新后需要重新微调
优先考虑替代方案
1.提示词工程
通过精心设计的提示词让模型理解你的需求
成本低,见效快,容易调整
适合大部分使用场景

2.RAG
让模型检索相关文档后再回答
能够获取最新信息
不需要重新训练模型
什么情况有必要微调
1.特定领域的专业知识
当你的业务涉及非常专业的领域,而通用模型的知识不够用时
如:医疗诊断系统、法律文书生成、特定行业的技术支持。

2.特殊的输出格式要求
需要模型输出特定格式,而提示词难以稳定控制时。如:结构化数据提取、特定的代码生成规范、标准化的报告格式。
3.私有数据的深度理解
需要模型深度理解你的私有数据,而RAG检索效果不够好时。如:企业内部知识库的深度应用、个人化推荐系统、基于历史数据的预测
4.性能要求极高的场景
对响应速度和准确性要求都很高的场景。如:实时客服系统、高频交易的决策支持、大规模自动化处理

总结
微调是一个强大的工具,但不是万能药。在考虑微调之前,先试试提示词优化和RAG。只有在确实需要深度定制,且有足够资源投入时,才考虑微调。
选择微调平台时,技术小白推荐阿里云百炼,有技术基础的推荐LLaMA-Factory。记住,工具是为了解决问题,不要为了微调而微调。
普通人如何抓住AI大模型的风口?
领取方式在文末
为什么要学习大模型?
目前AI大模型的技术岗位与能力培养随着人工智能技术的迅速发展和应用 , 大模型作为其中的重要组成部分 , 正逐渐成为推动人工智能发展的重要引擎 。大模型以其强大的数据处理和模式识别能力, 广泛应用于自然语言处理 、计算机视觉 、 智能推荐等领域 ,为各行各业带来了革命性的改变和机遇 。
目前,开源人工智能大模型已应用于医疗、政务、法律、汽车、娱乐、金融、互联网、教育、制造业、企业服务等多个场景,其中,应用于金融、企业服务、制造业和法律领域的大模型在本次调研中占比超过 30%。
随着AI大模型技术的迅速发展,相关岗位的需求也日益增加。大模型产业链催生了一批高薪新职业:
人工智能大潮已来,不加入就可能被淘汰。如果你是技术人,尤其是互联网从业者,现在就开始学习AI大模型技术,真的是给你的人生一个重要建议!
最后
只要你真心想学习AI大模型技术,这份精心整理的学习资料我愿意无偿分享给你,但是想学技术去乱搞的人别来找我!
在当前这个人工智能高速发展的时代,AI大模型正在深刻改变各行各业。我国对高水平AI人才的需求也日益增长,真正懂技术、能落地的人才依旧紧缺。我也希望通过这份资料,能够帮助更多有志于AI领域的朋友入门并深入学习。
真诚无偿分享!!!
vx扫描下方二维码即可
加上后会一个个给大家发
大模型全套学习资料展示
自我们与MoPaaS魔泊云合作以来,我们不断打磨课程体系与技术内容,在细节上精益求精,同时在技术层面也新增了许多前沿且实用的内容,力求为大家带来更系统、更实战、更落地的大模型学习体验。

希望这份系统、实用的大模型学习路径,能够帮助你从零入门,进阶到实战,真正掌握AI时代的核心技能!
01 教学内容

- 
  
从零到精通完整闭环:【基础理论 →RAG开发 → Agent设计 → 模型微调与私有化部署调→热门技术】5大模块,内容比传统教材更贴近企业实战!
 - 
  
大量真实项目案例: 带你亲自上手搞数据清洗、模型调优这些硬核操作,把课本知识变成真本事!
 
02适学人群
应届毕业生: 无工作经验但想要系统学习AI大模型技术,期待通过实战项目掌握核心技术。
零基础转型: 非技术背景但关注AI应用场景,计划通过低代码工具实现“AI+行业”跨界。
业务赋能突破瓶颈: 传统开发者(Java/前端等)学习Transformer架构与LangChain框架,向AI全栈工程师转型。

vx扫描下方二维码即可
本教程比较珍贵,仅限大家自行学习,不要传播!更严禁商用!
03 入门到进阶学习路线图
大模型学习路线图,整体分为5个大的阶段:
04 视频和书籍PDF合集

从0到掌握主流大模型技术视频教程(涵盖模型训练、微调、RAG、LangChain、Agent开发等实战方向)

新手必备的大模型学习PDF书单来了!全是硬核知识,帮你少走弯路(不吹牛,真有用)
05 行业报告+白皮书合集
收集70+报告与白皮书,了解行业最新动态!
06 90+份面试题/经验
AI大模型岗位面试经验总结(谁学技术不是为了赚$呢,找个好的岗位很重要)

07 deepseek部署包+技巧大全

由于篇幅有限
只展示部分资料
并且还在持续更新中…
真诚无偿分享!!!
vx扫描下方二维码即可
加上后会一个个给大家发
更多推荐
 

所有评论(0)