LoRA微调OpenAI Whisper:PEFT实现中文语音识别的实战指南
LoRA微调后仅需保存适配器权重(约10MB),原始Whisper权重保持不变,大幅降低部署成本。
·
LoRA微调OpenAI Whisper:PEFT实现中文语音识别的实战指南
1. 背景与原理
- Whisper模型:OpenAI开源的语音识别模型,支持多语言识别,基础架构为编码器-解码器Transformer。
- LoRA(低秩适应):通过注入低秩分解矩阵$A \in \mathbb{R}^{r \times k}$和$B \in \mathbb{R}^{d \times r}$($r \ll d$),仅微调少量参数: $$ W' = W + BA $$ 其中$W$为原始权重,$r$为秩(通常$r=8$)。
- PEFT库:Hugging Face提供的参数高效微调工具,支持LoRA等轻量级适配技术。
2. 环境准备
# 安装依赖
!pip install transformers datasets peft soundfile librosa evaluate jiwer
3. 数据准备
- 数据集:使用中文语音数据集(如AISHELL-1或Common Voice中文)
- 预处理:
from datasets import load_dataset # 加载数据集(示例:Common Voice) dataset = load_dataset("mozilla-foundation/common_voice_11_0", "zh-CN", split="train[:10%]") # 重采样至16kHz(Whisper输入要求) from librosa import resample import soundfile as sf def resample_audio(batch): audio, sr = sf.read(batch["path"]) audio_16k = resample(audio, orig_sr=sr, target_sr=16000) sf.write(batch["path"], audio_16k, 16000) return {"audio": batch["path"]} dataset = dataset.map(resample_audio)
4. 模型与处理器配置
from transformers import WhisperProcessor, WhisperForConditionalGeneration
# 加载预训练模型(以whisper-small为例)
model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-small")
processor = WhisperProcessor.from_pretrained("openai/whisper-small", language="zh", task="transcribe")
# 配置LoRA参数
from peft import LoraConfig, get_peft_model
config = LoraConfig(
r=8, # 秩
lora_alpha=32, # 缩放因子
target_modules=["q_proj", "v_proj"], # 目标模块(Whisper的注意力层)
lora_dropout=0.1,
bias="none"
)
model = get_peft_model(model, config)
model.print_trainable_parameters() # 输出:可训练参数≈0.5%
5. 训练流程
from transformers import Seq2SeqTrainingArguments, Seq2SeqTrainer
# 数据整理函数
def prepare_dataset(batch):
audio = batch["audio"]
input_features = processor(audio, sampling_rate=16000).input_features[0]
labels = processor.tokenizer(batch["sentence"]).input_ids
return {"input_features": input_features, "labels": labels}
dataset = dataset.map(prepare_dataset, remove_columns=dataset.column_names)
# 训练参数
training_args = Seq2SeqTrainingArguments(
output_dir="./whisper-lora-zh",
per_device_train_batch_size=8,
learning_rate=1e-4,
num_train_epochs=3,
fp16=True,
evaluation_strategy="epoch",
save_strategy="epoch"
)
# 启动训练
trainer = Seq2SeqTrainer(
model=model,
args=training_args,
train_dataset=dataset,
tokenizer=processor.tokenizer,
)
trainer.train()
6. 推理与评估
import evaluate
wer_metric = evaluate.load("wer")
# 推理函数
def transcribe(audio_path):
audio, _ = sf.read(audio_path)
inputs = processor(audio, sampling_rate=16000, return_tensors="pt")
predicted_ids = model.generate(inputs=input_features)
return processor.batch_decode(predicted_ids, skip_special_tokens=True)[0]
# 计算词错率(WER)
references = ["这是测试句子"]
predictions = [transcribe("test_audio.wav")]
wer = wer_metric.compute(references=references, predictions=predictions)
print(f"WER: {wer:.2f}") # 示例输出:WER: 0.15
7. 优化建议
- 数据增强:添加噪声、时移变换提升鲁棒性
- 秩选择:通过实验调整$r$值($r \in [4, 16]$),平衡效果与效率
- 混合精度训练:启用
fp16=True加速训练 - 模型融合:结合N-gram语言模型纠错
关键点:LoRA微调后仅需保存适配器权重(约10MB),原始Whisper权重保持不变,大幅降低部署成本。
更多推荐



所有评论(0)