TPAMI-2025 综述文章速览
近期TPAMI期刊发表多篇人工智能领域综述文章,涵盖小样本学习、扩散模型、基础模型等多个前沿方向。其中《开放世界中的小样本学习》探讨模型在开放环境下的适应能力;3篇扩散模型相关综述分别聚焦低级视觉应用、高效实现方法和图像编辑技术;《基础模型定义视觉新纪元》分析大规模预训练模型的影响。其他研究涉及多模态学习、点云处理、图像去雨等方向,并包含多个领域基准测试,为AI技术发展提供系统性总结和未来展望。
TPAMI-2025 综述文章
Toward Few-Shot Learning in the Open World: A Review and Beyond
文章解读: 开放世界中的小样本学习:综述与展望
http://www.studyai.com/xueshu/paper/detail/1279308036
文章链接:(10.1109/TPAMI.2025.3594686)
Diffusion Models in Low-Level Vision: A Survey
文章解读: 低级视觉中的扩散模型:一项调查
http://www.studyai.com/xueshu/paper/detail/1876609176
文章链接:(10.1109/TPAMI.2025.3545047)
Foundation Models Defining a New Era in Vision: A Survey and Outlook
文章解读: 基础模型定义视觉新纪元:一项调查与展望
http://www.studyai.com/xueshu/paper/detail/3289573020
文章链接:(10.1109/TPAMI.2024.3506283)
Efficient Diffusion Models: A Comprehensive Survey From Principles to Practices
文章解读: 高效扩散模型:从原理到实践的全面综述
http://www.studyai.com/xueshu/paper/detail/3623250692
文章链接:(10.1109/TPAMI.2025.3569700)
Diffusion Model-Based Image Editing: A Survey
文章解读: 基于扩散模型的图像编辑:一项调查
http://www.studyai.com/xueshu/paper/detail/5376630776
文章链接:(10.1109/TPAMI.2025.3541625)
Few-Shot Class-Incremental Learning for Classification and Object Detection: A Survey
文章解读: 小样本增量学习在分类和目标检测中的应用:一项调查
http://www.studyai.com/xueshu/paper/detail/6096163853
文章链接:(10.1109/TPAMI.2025.3529038)
Self-Supervised Multimodal Learning: A Survey
文章解读: 自监督多模态学习:一项调查
http://www.studyai.com/xueshu/paper/detail/6197312292
文章链接:(10.1109/TPAMI.2024.3429301)
Human Motion Video Generation: A Survey
文章解读: 人体运动视频生成:一项综述
http://www.studyai.com/xueshu/paper/detail/6735281851
文章链接:(10.1109/TPAMI.2025.3594034)
Graph Anomaly Detection in Time Series: A Survey
文章解读: 时间序列中的图异常检测:一项调查
http://www.studyai.com/xueshu/paper/detail/6911597710
文章链接:(10.1109/TPAMI.2025.3566620)
RenAIssance: A Survey Into AI Text-to-Image Generation in the Era of Large Model
文章解读: RenAIssance:大型模型时代人工智能文本到图像生成技术综述
http://www.studyai.com/xueshu/paper/detail/7185571752
文章链接:(10.1109/TPAMI.2024.3522305)
Towards Data-And Knowledge-Driven AI: A Survey on Neuro-Symbolic Computing
文章解读: 迈向数据与知识驱动的AI:神经符号计算综述
http://www.studyai.com/xueshu/paper/detail/7677390876
文章链接:(10.1109/TPAMI.2024.3483273)
Out-of-Distribution Generalization on Graphs: A Survey
文章解读: 图上的分布外泛化:一项调查
http://www.studyai.com/xueshu/paper/detail/8551638182
文章链接:(10.1109/TPAMI.2025.3593897)
A Survey and Benchmark of Automatic Surface Reconstruction From Point Clouds
文章解读: 从点云中进行自动表面重建的综述与基准测试
http://www.studyai.com/xueshu/paper/detail/8710057569
文章链接:(10.1109/TPAMI.2024.3510932)
When Meta-Learning Meets Online and Continual Learning: A Survey
文章解读: 当元学习遇见在线和持续学习:综述
http://www.studyai.com/xueshu/paper/detail/8918607627
文章链接:(10.1109/TPAMI.2024.3463709)
Deep Learning-Based Point Cloud Compression: An In-Depth Survey and Benchmark
文章解读: 基于深度学习的点云压缩:深入综述与基准测试
http://www.studyai.com/xueshu/paper/detail/8935003120
文章链接:(10.1109/TPAMI.2025.3594355)
Towards Unified Deep Image Deraining: A Survey and a New Benchmark
文章解读: 面向统一的深度图像去雨:一项调查和一个新的基准
http://www.studyai.com/xueshu/paper/detail/8956095322
文章链接:(10.1109/TPAMI.2025.3556133)
The Synergy Between Data and Multi-Modal Large Language Models: A Survey From Co-Development Perspective
文章解读: 数据和多模态大语言模型的协同作用:从协同开发视角的综述
http://www.studyai.com/xueshu/paper/detail/9766383980
文章链接:(10.1109/TPAMI.2025.3576835)
A Comprehensive Survey of Forgetting in Deep Learning Beyond Continual Learning
文章解读: 超越持续学习,深度学习中的遗忘综合研究
http://www.studyai.com/xueshu/paper/detail/9771055056
文章链接:(10.1109/TPAMI.2024.3498346)
Event-Based Stereo Depth Estimation: A Survey
文章解读: 基于事件的立体深度估计:一项调查
http://www.studyai.com/xueshu/paper/detail/9889827315
更多推荐

所有评论(0)