聚宽策略研究--3小市值无卖出缓冲池
这是一个相对成熟的多因子选股策略,结合了价值投资(基本面)和技术分析(涨停板),在小市值因子的基础上增加了严格的风险控制。排除涨停股(价格超过前收97%)和跌停股(价格低于前收104%)not_buy_again_list:30天内持有过的股票。排除ST、停牌、次新股(上市不足250天)1. 选股逻辑(my_Trader函数)如果涨停板打开(现价<涨停价),立即卖出。just_sold:近期涨停卖
策略来自聚宽社区,单纯的学习使用研究,不做投资参考,商业用途
策略原理
这是一个基于小市值+PEG估值+涨停板策略的量化交易策略。让我详细分析其核心原理:
策略核心逻辑
1. 选股逻辑(my_Trader函数)
三层筛选机制:
第一层:基础过滤
-
排除科创板、北交所股票(高风险)
-
排除ST、停牌、次新股(上市不足250天)
-
排除涨停股(价格超过前收97%)和跌停股(价格低于前收104%)
-
排除高价股(股价>10元)
第二层:基本面筛选
-
ROE > 15%(盈利能力强)
-
ROA > 10%(资产使用效率高)
-
按市值从小到大排序(小市值因子)
第三层:涨停板策略过滤
-
排除最近30天内涨停过的股票
-
排除近期持有过的股票(避免重复交易)
2. 独特的涨停板处理机制
实时监控(check_limit_up函数):
-
每天14:00检查昨日涨停的持仓股
-
如果涨停板打开(现价<涨停价),立即卖出
-
涨停板维持则继续持有
防追高机制:
-
将涨停卖出的股票加入just_sold名单
-
一段时间内不再买入这些股票
3. 风控体系
持仓管理:
-
固定持有10只股票
-
等权重分配资金
-
每月末调仓一次
交易限制:
-
4月份强制清仓(规避财报风险)
-
设置涨跌幅限制过滤
-
控制单只股票最大仓位
4. 策略优势分析
小市值效应:
-
历史证明小市值股票长期跑赢大盘
-
市值排序确保选中真正的小盘股
质量筛选:
-
ROE和ROA双重保障选股质量
-
避免陷入价值陷阱
涨停板策略:
-
捕捉短期动量效应
-
及时止盈,锁定涨停收益
5. 风险控制特色
黑名单机制:
-
not_buy_again_list:30天内持有过的股票
-
just_sold:近期涨停卖出的股票
-
有效避免反复交易同一支股票
技术面过滤:
-
排除涨停股防止追高
-
排除跌停股规避风险
-
价格过滤控制买入成本
6. 潜在改进点
当前策略可能的问题:
-
4月份清仓规则较绝对,可能错过机会
-
固定10只股票可能过于刚性
-
小市值因子在特定市场环境下可能失效
-
缺乏止损机制
建议优化方向:
-
动态调整持仓数量
-
增加市场状态判断
-
优化涨停板卖出时机
-
加入动量或波动率因子
这是一个相对成熟的多因子选股策略,结合了价值投资(基本面)和技术分析(涨停板),在小市值因子的基础上增加了严格的风险控制。
回测的数据结果
源代码
import pandas as pd
from jqdata import *
from jqfactor import get_factor_values
import redis
import json
def initialize(context):
# setting
# 设置日志级别为error
log.set_level('order', 'error')
# 开启动态复权模式(真实价格)
set_option('use_real_price', True)
# 设置是否开启避免未来数据模式
set_option('avoid_future_data', True)
# 设置基准
set_benchmark('000300.XSHG')
# 设置滑点
set_slippage(FixedSlippage(0.02))
# 设置交易成本
set_order_cost(OrderCost(open_tax=0, close_tax=0.001, open_commission=0.0003, close_commission=0.0003, close_today_commission=0, min_commission=5),type='fund')
# strategy
#初始化全局变量
g.no_trading_today_signal = False
g.stock_num = 10 # 持股数量
g.choice = [] # 股票池
g.just_sold = [] # just_sold标记本月涨停过的
g.limit_days = 30 # 限制天数N天
g.hold_list = [] # 已持有股票列表
g.history_hold_list = [] # 存放N天持有过的股票,二维数组
g.not_buy_again_list = [] # N天买过的股票,不再买入的黑名单,一维数组
# 准备昨日涨停且正在持有的股票列表
run_daily(prepare_high_limit_list, time='9:05', reference_security='000300.XSHG')
# 每天调整昨日涨停股票
run_daily(check_limit_up, time='14:00')
# 每月选股
run_monthly(my_Trader, -1 ,time='9:30', force=True)
# 每月调仓一次
run_monthly(go_Trader, -1 ,time='14:55', force=True)
# 是否是4月份,是则清仓
run_daily(close_account, '14:30')
# 收盘后运行
# run_daily(after_market_close, time='after_close', reference_security='000300.XSHG')
# 每月选股
def my_Trader(context):
#1 all stocks
dt_last = context.previous_date
stocks = get_all_securities('stock', dt_last).index.tolist()
stocks = filter_kcbj_stock(stocks)
#2 股息率筛选排序
# stocks = get_dividend_ratio_filter_list(context, stocks, False, 0, 0.25)
# stocks = get_factor_filter_list(context, stocks, 'ROAEBITTTM', False, 0, 0.2)
#4 各种过滤
choice = filter_st_stock(stocks)
choice = filter_paused_stock(choice)
choice = filter_new_stock(context, choice)
choice = filter_limitup_stock(context,choice)
choice = filter_limitdown_stock(context,choice)
#5 低价股
choice = filter_highprice_stock(context,choice)
#3 基本面筛选,并根据小市值排序
choice = get_peg(context,choice)
#过滤最近买过且涨停过的股票
recent_limit_up_list = get_recent_limit_up_stock(context, choice, g.limit_days)
# black_list = list((set(g.not_buy_again_list).intersection(set(recent_limit_up_list))).union(set(g.just_sold)))
black_list = list(set(g.not_buy_again_list).intersection(set(recent_limit_up_list)))
target_list = [stock for stock in choice if stock not in black_list]
log.info('过滤完黑名单的数量', len(target_list))
#截取不超过最大持仓数的股票量
choice = target_list[:min(g.stock_num, len(target_list))]
g.choice = choice[:g.stock_num]
#1-1 选股模块
def get_factor_filter_list(context,stock_list,jqfactor,sort,p1,p2):
yesterday = context.previous_date
score_list = get_factor_values(stock_list, jqfactor, end_date=yesterday, count=1)[jqfactor].iloc[0].tolist()
df = pd.DataFrame(columns=['code','score'])
df['code'] = stock_list
df['score'] = score_list
df = df.dropna()
df.sort_values(by='score', ascending=sort, inplace=True)
filter_list = list(df.code)[int(p1*len(df)):int(p2*len(df))]
return filter_list
# 每月调仓一次
def go_Trader(context):
if g.no_trading_today_signal == False:
# g.just_sold = [] #每月清零一次 g.just_sold 防止其中内容一直膨胀
cdata = get_current_data()
choice = g.choice
# Sell,仍在选出的股票池中,则不卖
for s in context.portfolio.positions:
if (s not in choice and (not cdata[s].paused)) :
log.info('Sell', s, cdata[s].name)
order_target(s, 0)
g.just_sold.append(s)
if len(g.just_sold) >= g.limit_days:
g.just_sold = g.just_sold[-g.stock_num:]
# buy,根据资金买入相应的金额
position_count = len(context.portfolio.positions)
if g.stock_num > position_count:
psize = context.portfolio.available_cash/(g.stock_num - position_count)
for s in choice:
if s not in context.portfolio.positions:
log.info('buy', s, cdata[s].name)
order = order_value(s, psize)
if len(context.portfolio.positions) == g.stock_num:
break
# 没用到此函数
def cap(context):
current_data = get_current_data() #获取日期
hold_stocks = context.portfolio.positions.keys()
for s in hold_stocks:
q = query(valuation).filter(valuation.code == s)
df = get_fundamentals(q)
# log.info(s,current_data[s].name,'流值',df['circulating_market_cap'][0],'亿')
log.info(s,current_data[s].name,'市值',df['market_cap'][0],'亿')
log.info(s,current_data[s].name,'股价',current_data[s].last_price,'元')
#2-3 获取最近N个交易日内有涨停的股票
def get_recent_limit_up_stock(context, stock_list, recent_days):
stat_date = context.previous_date
new_list = []
for stock in stock_list:
df = get_price(stock, end_date=stat_date, frequency='daily', fields=['close','high_limit'], count=recent_days, panel=False, fill_paused=False)
df = df[df['close'] == df['high_limit']]
if len(df) > 0:
new_list.append(stock)
return new_list
# 基本面筛选,并根据小市值排序
def get_peg(context,stocks):
# 获取基本面数据
q = query(valuation.code,
valuation.pe_ratio,
indicator.inc_net_profit_year_on_year,
valuation.pe_ratio / indicator.inc_net_profit_year_on_year,# PEG
indicator.roe / valuation.pb_ratio, # 收益率指标:ROE/PB特别适合于周期类、成长性一般企业的估值分析
indicator.roe,
indicator.roa,
valuation.pb_ratio
).filter(
# valuation.pe_ratio > 0,
# indicator.inc_net_profit_year_on_year > 0,
# valuation.pe_ratio / indicator.inc_net_profit_year_on_year<1,
# valuation.pb_ratio < 3,
# indicator.roe / valuation.pb_ratio > 3.2, #国债收益率
indicator.roe > 0.15,
indicator.roa > 0.10,
valuation.code.in_(stocks))
df_fundamentals = get_fundamentals(q, date = None)
stocks = list(df_fundamentals.code)
# fuandamental data
df = get_fundamentals(query(valuation.code).filter(valuation.code.in_(stocks)).order_by(valuation.market_cap.asc()))
choice = list(df.code)
return choice
#1-1 根据最近一年分红除以当前总市值计算股息率并筛选排序
def get_dividend_ratio_filter_list(context, stock_list, sort, p1, p2):
time1 = context.previous_date
time0 = time1 - datetime.timedelta(days=365)
#获取分红数据,由于finance.run_query最多返回4000行,以防未来数据超限,最好把stock_list拆分后查询再组合
interval = 1000 #某只股票可能一年内多次分红,导致其所占行数大于1,所以interval不要取满4000
list_len = len(stock_list)
#截取不超过interval的列表并查询
q = query(
finance.STK_XR_XD.code,
finance.STK_XR_XD.a_registration_date,
finance.STK_XR_XD.bonus_amount_rmb
).filter(
finance.STK_XR_XD.a_registration_date >= time0,
finance.STK_XR_XD.a_registration_date <= time1,
finance.STK_XR_XD.code.in_(stock_list[:min(list_len, interval)]))
df = finance.run_query(q)
#对interval的部分分别查询并拼接
if list_len > interval:
df_num = list_len // interval
for i in range(df_num):
q = query(
finance.STK_XR_XD.code,
finance.STK_XR_XD.a_registration_date,
finance.STK_XR_XD.bonus_amount_rmb
).filter(
finance.STK_XR_XD.a_registration_date >= time0,
finance.STK_XR_XD.a_registration_date <= time1,
finance.STK_XR_XD.code.in_(stock_list[interval*(i+1):min(list_len,interval*(i+2))]))
temp_df = finance.run_query(q)
df = df.append(temp_df)
dividend = df.fillna(0)
dividend = dividend.set_index('code')
dividend = dividend.groupby('code').sum()
temp_list = list(dividend.index) #query查询不到无分红信息的股票,所以temp_list长度会小于stock_list
#获取市值相关数据
q = query(valuation.code,valuation.market_cap).filter(valuation.code.in_(temp_list))
cap = get_fundamentals(q, date=time1)
cap = cap.set_index('code')
#计算股息率
DR = pd.concat([dividend, cap] ,axis=1, sort=False)
DR['dividend_ratio'] = (DR['bonus_amount_rmb']/10000) / DR['market_cap']
#排序并筛选
DR = DR.sort_values(by=['dividend_ratio'], ascending=sort)
final_list = list(DR.index)[int(p1*len(DR)):int(p2*len(DR))]
return final_list
# 准备昨日涨停且正在持有的股票列表
def prepare_high_limit_list(context):
# 昨日涨停列表
g.high_limit_list = []
#获取已持有列表
hold_list = list(context.portfolio.positions)
if hold_list:
df = get_price(hold_list, end_date=context.previous_date, frequency='daily',
fields=['close', 'high_limit'],
count=1, panel=False)
g.high_limit_list = df[df['close'] == df['high_limit']]['code'].tolist()
#判断今天是否为账户资金再平衡的日期,空仓期一个月
g.no_trading_today_signal = False
# g.no_trading_today_signal = today_is_between(context, '04-01', '04-30')
#获取已持有列表
g.hold_list= []
for position in list(context.portfolio.positions.values()):
stock = position.security
g.hold_list.append(stock)
#获取最近一段时间持有过的股票列表
g.history_hold_list.append(g.hold_list)
if len(g.history_hold_list) >= g.limit_days:
g.history_hold_list = g.history_hold_list[-g.limit_days:]
temp_set = set()
for hold_list in g.history_hold_list:
for stock in hold_list:
temp_set.add(stock)
g.not_buy_again_list = list(temp_set)
# 调整昨日涨停股票
def check_limit_up(context):
if g.no_trading_today_signal == False:
# 获取持仓的昨日涨停列表
current_data = get_current_data()
if g.high_limit_list:
for stock in g.high_limit_list:
# 涨停的票,涨不动了就卖掉
if current_data[stock].last_price < current_data[stock].high_limit:
order_target(stock, 0)
log.info("[%s]涨停打开,卖出" % stock)
# just_sold标记本月涨停过的
g.just_sold.append(stock)
if len(g.just_sold) >= g.limit_days:
g.just_sold = g.just_sold[-g.stock_num:]
else:
log.info("[%s]涨停,继续持有" % stock)
position_count = len(context.portfolio.positions)
# 当持有股票数量不足时:
if g.stock_num > position_count and position_count != 0: # position_count != 0 用于避免第一次运行时代替go_trader 买入
my_Trader(context) # 每月的选股逻辑,计算 g.choice
cdata = get_current_data()
psize = context.portfolio.available_cash/(g.stock_num - position_count)
for s in g.choice:
if s not in context.portfolio.positions:
order = order_value(s, psize)
if len(context.portfolio.positions) == g.stock_num:
break
# 过滤科创北交股票
def filter_kcbj_stock(stock_list):
for stock in stock_list[:]:
if stock[0] == '4' or stock[0] == '8' or stock[:2] == '68':
stock_list.remove(stock)
return stock_list
# 过滤停牌股票
def filter_paused_stock(stock_list):
current_data = get_current_data()
return [stock for stock in stock_list if not current_data[stock].paused]
# 过滤ST及其他具有退市标签的股票
def filter_st_stock(stock_list):
current_data = get_current_data()
return [stock for stock in stock_list
if not current_data[stock].is_st
and 'ST' not in current_data[stock].name
and '*' not in current_data[stock].name
and '退' not in current_data[stock].name]
#2-6 过滤次新股
def filter_new_stock(context,stock_list):
yesterday = context.previous_date
return [stock for stock in stock_list if not yesterday - get_security_info(stock).start_date < datetime.timedelta(days=250)]
# 过滤涨幅过大的股票
def filter_limitup_stock(context, stock_list):
last_prices = history(1, unit='1m', field='close', security_list=stock_list)
current_data = get_current_data()
return [stock for stock in stock_list if stock in context.portfolio.positions.keys()
or last_prices[stock][-1] < current_data[stock].high_limit*0.97]
# 过滤跌幅过大的股票
def filter_limitdown_stock(context, stock_list):
last_prices = history(1, unit='1m', field='close', security_list=stock_list)
current_data = get_current_data()
return [stock for stock in stock_list if stock in context.portfolio.positions.keys()
or last_prices[stock][-1] > current_data[stock].low_limit*1.04]
#2-4 过滤股价高于10元的股票
def filter_highprice_stock(context,stock_list):
last_prices = history(1, unit='1m', field='close', security_list=stock_list)
return [stock for stock in stock_list if stock in context.portfolio.positions.keys()
or last_prices[stock][-1] < 10]
def after_market_close(context):
log.info(str(context.current_dt))
#4-2 如果no_trading_today_signal为True,则清仓
def close_account(context):
if g.no_trading_today_signal == True:
position_count = context.portfolio.positions
if len(position_count) != 0:
for stock in position_count:
position = context.portfolio.positions[stock]
close_position(position)
log.info("卖出[%s]" % (stock))
#3-1 交易模块-自定义下单
def order_target_value_(security, value):
if value == 0:
log.debug("Selling out %s" % (security))
else:
log.debug("Order %s to value %f" % (security, value))
return order_target_value(security, value)
#3-2 交易模块-开仓
def open_position(security, value):
order = order_target_value_(security, value)
if order != None and order.filled > 0:
return True
return False
#3-3 交易模块-平仓
def close_position(position):
security = position.security
order = order_target_value_(security, 0) # 可能会因停牌失败
if order != None:
if order.status == OrderStatus.held and order.filled == order.amount:
return True
return False
#4-1 判断今天是否为账户资金再平衡的日期
def today_is_between(context, start_date, end_date):
today = context.current_dt.strftime('%m-%d')
if (start_date <= today) and (today <= end_date):
return True
else:
return False
# end
更多推荐
所有评论(0)