当AI成为“需求预言家“:Python开发者如何用“混沌工程“思维打破预测宿命论?
我们应该清醒认识到:**AI的预测不是创新的终点,而是我们创意的起点!** 当AI告诉我们"最可能发生的未来"时,真正的创新者会问:"如何创造更美好的未来?如何让低概率高价值的情景成为现实?"
前言:哈喽,大家好,今天给大家分享一篇文章!并提供具体代码帮助大家深入理解,彻底掌握!创作不易,如果能帮助到大家或者给大家一些灵感和启发,欢迎 点赞 + 收藏 + 关注 哦 💕
当AI成为"需求预言家":Python开发者如何用"混沌工程"思维打破预测宿命论?
目录
📚 引言:当AI开始"剧透"产品路线图,我们的创意是否真的"命中注定"?
各位代码世界的"命运反抗者"们!今天咱们来聊个让人又爱又恨的话题——AI现在不仅能预测用户需求,甚至开始"剧透"产品演进路径!🎭 就像那个总在你看悬疑片时提前揭秘凶手的"聪明朋友",AI的预测能力让不少Python开发者开始怀疑人生。
前几天我团队的小李忧心忡忡地问我:“老大,AI连我们下个季度的产品方向都能预测,那我们是不是变成了执行AI预言的’代码祭司’?” 我看着他那张写满宿命论的脸,想起了自己第一次听说"技术奇点"时的惶恐(虽然现在奇点还没来,我的发际线倒是先奇点了)。
但是别急!作为用Python与命运搏斗了十几年的"老战士",我要告诉大家:AI的预测不是宿命,而是我们创意的起跑线! 真正的创新,恰恰发生在AI预测的边界之外!
先分享个振奋人心的故事:去年我们面对一个"注定"的市场趋势——AI预测视频剪辑软件应该优化渲染速度。但我们的Python团队却反其道而行,开发了"情感化剪辑助手",结果用户好评如潮!为什么?因为我们读懂了用户没说出口的渴望:他们不是想要更快的剪辑,而是想要更动人的故事。
📚 一、解构AI的"预言"机制:从数据 deterministic 到创意 indeterministic
📘1、AI需求预测的技术本质与Python实现
AI的预测能力建立在"历史重演"的假设上,但创新恰恰要求"历史被改写"。让我们用Python来解剖这个矛盾:
import numpy as np
from sklearn.ensemble import RandomForestRegressor
from sklearn.metrics import mean_squared_error
import pandas as pd
class DestinyPredictor:
def __init__(self):
self.model = RandomForestRegressor(n_estimators=100, random_state=42)
self.prediction_history = []
def train_fate_model(self, historical_data):
"""训练命运预测模型 - AI的'宿命论'基础"""
# 特征工程:基于过去预测未来
features = self._engineer_destiny_features(historical_data)
targets = historical_data['future_outcomes']
# 训练预测模型
self.model.fit(features, targets)
# 验证模型准确性
predictions = self.model.predict(features)
mse = mean_squared_error(targets, predictions)
print(f"命运预测模型MSE: {mse:.4f}")
return self.model
def predict_technological_destiny(self, current_landscape):
"""预测技术命运 - AI的'剧透'能力"""
current_features = self._engineer_destiny_features([current_landscape])
destiny_prediction = self.model.predict(current_features)[0]
# 记录预测结果
prediction_record = {
'timestamp': pd.Timestamp.now(),
'prediction': destiny_prediction,
'confidence': self._calculate_prediction_confidence(current_features)
}
self.prediction_history.append(prediction_record)
return destiny_prediction
def introduce_creative_chaos(self, prediction, chaos_factor=0.3):
"""引入创意混沌 - 打破预测宿命"""
# 在确定性预测中注入不确定性
chaotic_prediction = prediction * (1 + np.random.uniform(-chaos_factor, chaos_factor))
# 添加突破性创新概率
breakthrough_probability = self._calculate_breakthrough_probability()
if breakthrough_probability > 0.7:
chaotic_prediction *= 1.5 # 创新放大效应
return chaotic_prediction
def _calculate_breakthrough_probability(self):
"""计算突破性创新概率 - AI的预测盲区"""
# 基于历史创新模式,但真正的突破往往超出模式之外
factors = [
self._measure_cross_domain_fertilization(),
self._assess_paradigm_shift_likelihood(),
self._evaluate_black_swan_potential()
]
return np.mean(factors)
# 使用示例
destiny_predictor = DestinyPredictor()
historical_trends = load_technology_trends()
destiny_predictor.train_fate_model(historical_trends)
current_state = get_current_tech_landscape()
predicted_destiny = destiny_predictor.predict_technological_destiny(current_state)
chaotic_future = destiny_predictor.introduce_creative_chaos(predicted_destiny)
这个代码揭示了关键洞察:AI预测基于历史路径依赖,而创新需要路径创造!
📘2、AI预测的局限性:为什么"技术宿命论"是伪命题?
让我们用mermaid图来可视化AI预测的完整逻辑链和其根本缺陷:
从图中可以看出,AI预测就像火车轨道——指向确定的终点,而创意探索如同航海——发现新大陆。
📘3、AI预测与人类创新的全面能力对比
为了更清晰理解差异,我制作了这个深度对比表格:
能力维度 | AI预测能力特征 | 人类创新能力特征 | 创新价值差异 |
---|---|---|---|
思维模式 | 收敛性思维:基于模式的归纳 | 发散性思维:突破模式的创造 | 人类主导突破创新 |
时间视角 | 短期确定性预测(1-2年) | 长期愿景塑造(5-10年) | 人类把握战略方向 |
风险偏好 | 风险规避:选择高概率路径 | 风险承担:探索低概率高回报 | 人类开创全新领域 |
知识运用 | 领域内深度模式识别 | 跨领域知识重组创新 | 人类实现范式转换 |
不确定性处理 | 寻求确定性,减少模糊性 | 拥抱不确定性,创造新可能 | 人类适应复杂环境 |
价值创造 | 渐进式价值优化 | 突破性价值创造 | 人类定义新价值标准 |
在Python技术生态中的具体应用对比:
Python开发场景 | AI预测导向方案 | 人类创新导向方案 | 创新价值对比 |
---|---|---|---|
架构设计 | 推荐成熟稳定架构模式 | 创造适应未来需求的弹性架构 | 人类设计更具前瞻性 |
技术选型 | 基于当前流行度选择 | 基于未来趋势战略选择 | 人类选型更有远见 |
产品功能 | 优化现有功能体验 | 创造全新功能品类 | 人类创造市场新需求 |
用户体验 | A/B测试渐进改进 | 重新定义交互范式 | 人类设计引领潮流 |
数据处理 | 优化现有算法效率 | 发明全新数据处理范式 | 人类突破技术瓶颈 |
📚 二、Python开发者的"命运反抗"工具箱:从路径依赖到路径创造
📘1、混沌工程思维在创新中的应用
真正的创新需要引入可控的混沌,打破AI预测的确定性陷阱。让我们用Python实现"创造性混沌":
import numpy as np
from scipy import stats
import matplotlib.pyplot as plt
class ChaosEngineeringForInnovation:
def __init__(self, stability_threshold=0.8):
self.stability_threshold = stability_threshold
self.innovation_history = []
def introduce_controlled_chaos(self, system_state, chaos_intensity=0.1):
"""引入受控混沌 - 打破系统稳定性促发创新"""
# 评估当前系统稳定性
stability_score = self._assess_system_stability(system_state)
if stability_score > self.stability_threshold:
# 系统过于稳定,需要引入混沌
chaotic_elements = self._generate_chaotic_elements(chaos_intensity)
innovated_system = self._apply_chaotic_perturbation(system_state, chaotic_elements)
# 评估混沌引入效果
innovation_potential = self._evaluate_innovation_potential(innovated_system)
return {
'original_system': system_state,
'chaotic_elements': chaotic_elements,
'innovated_system': innovated_system,
'innovation_potential': innovation_potential
}
else:
# 系统已有足够创新活力
return {'status': 'sufficient_chaos', 'system': system_state}
def _generate_chaotic_elements(self, intensity):
"""生成混沌元素 - 创新的种子"""
chaotic_elements = []
# 随机性注入
if np.random.random() < intensity:
chaotic_elements.append({
'type': 'random_variation',
'description': '引入随机参数变异',
'effect': '打破局部最优解'
})
# 约束条件放松
if np.random.random() < intensity * 0.8:
chaotic_elements.append({
'type': 'constraint_relaxation',
'description': '暂时放松系统约束',
'effect': '探索传统边界外的可能性'
})
# 跨界知识引入
if np.random.random() < intensity * 0.6:
chaotic_elements.append({
'type': 'cross_domain_insight',
'description': '引入其他领域启发',
'effect': '触发远距离联想创新'
})
return chaotic_elements
def measure_innovation_emergence(self, system_before, system_after, time_window=30):
"""测量创新涌现效果 - 量化混沌价值"""
metrics = {}
# 多样性增长度量
diversity_increase = self._calculate_diversity_growth(system_before, system_after)
metrics['diversity_growth'] = diversity_increase
# 适应性提升度量
adaptability_improvement = self._measure_adaptability_enhancement(system_before, system_after)
metrics['adaptability_improvement'] = adaptability_improvement
# 新奇性出现度量
novelty_emergence = self._detect_novelty_emergence(system_after, system_before)
metrics['novelty_emergence'] = novelty_emergence
# 计算综合创新指数
innovation_index = (
diversity_increase * 0.4 +
adaptability_improvement * 0.3 +
novelty_emergence * 0.3
)
metrics['innovation_index'] = innovation_index
return metrics
# 实战应用
chaos_engineer = ChaosEngineeringForInnovation()
current_product_architecture = load_current_architecture()
# 引入10%的混沌度激发创新
innovation_result = chaos_engineer.introduce_controlled_chaos(current_product_architecture, 0.1)
innovation_metrics = chaos_engineer.measure_innovation_emergence(
innovation_result['original_system'],
innovation_result['innovated_system']
)
📘2、反脆弱设计模式:在不确定性中获益
借鉴塔勒布的反脆弱理论,我们可以用Python构建在预测不确定性中成长的系统:
📖 (1)、Python实现反脆弱系统设计
class AntiFragileSystemDesigner:
def __init__(self):
self.stress_test_results = []
self.adaptation_mechanisms = []
def design_anti_fragile_architecture(self, system_requirements):
"""设计反脆弱系统架构 - 在不确定性中成长"""
base_architecture = self._create_resilient_base(system_requirements)
# 添加反脆弱特性
anti_fragile_architecture = self._enhance_with_anti_fragile_features(base_architecture)
# 设计压力响应机制
stress_response_system = self._design_stress_response_mechanisms(anti_fragile_architecture)
# 构建学习进化回路
learning_loops = self._build_learning_evolution_loops(stress_response_system)
return learning_loops
def _enhance_with_anti_fragile_features(self, architecture):
"""增强反脆弱特性"""
enhanced_architecture = architecture.copy()
# 添加过度补偿机制
enhanced_architecture['overcompensation_mechanisms'] = [
self._create_redundancy_system(),
self._design_failover_strategies(),
self._build_capacity_buffer()
]
# 引入可选性设计
enhanced_architecture['optionality_design'] = self._create_real_options()
# 构建凸性响应函数
enhanced_architecture['convex_response'] = self._design_convex_exposure()
return enhanced_architecture
def _create_real_options(self):
"""创建真实选择权 - 反脆弱的核心"""
options = {
'technology_options': self._maintain_technology_pluralism(),
'architecture_options': self._design_modular_alternatives(),
'strategy_options': self._develop_contingency_plans()
}
return options
def stress_test_innovation_potential(self, system_design, stress_scenarios):
"""压力测试创新潜力"""
test_results = []
for scenario in stress_scenarios:
# 施加压力
stressed_system = self._apply_stress(scenario, system_design)
# 测量响应
response_metrics = self._measure_anti_fragile_response(stressed_system)
# 评估创新涌现
innovation_emergence = self._assess_innovation_emergence(response_metrics)
test_results.append({
'scenario': scenario,
'response_metrics': response_metrics,
'innovation_potential': innovation_emergence
})
return test_results
📖 (2)、基于不确定性的创新策略
class UncertaintyDrivenInnovation:
def __init__(self):
self.innovation_portfolio = []
self.black_swan_preparation = {}
def develop_innovation_strategy(self, market_uncertainty):
"""制定基于不确定性的创新策略"""
strategy = {
'core_certainties': self._exploit_known_certainties(),
'adjacent_uncertainties': self._explore_adjacent_possibilities(),
'transformative_uncertainties': self._embrace_transformative_unknowns()
}
# 根据不确定性水平调整策略权重
uncertainty_level = self._assess_uncertainty_level(market_uncertainty)
strategy_weights = self._calculate_strategy_weights(uncertainty_level)
return {
'strategy_framework': strategy,
'dynamic_weights': strategy_weights,
'adaptation_triggers': self._define_adaptation_triggers()
}
def _explore_adjacent_possibilities(self):
"""探索相邻可能性 - 创新温床"""
exploration_strategies = []
# 技术相邻可能性
exploration_strategies.append({
'type': 'technological_adjacency',
'approach': '现有技术的跨界应用',
'risk_level': '中等',
'potential_reward': '中等偏高'
})
# 市场相邻可能性
exploration_strategies.append({
'type': 'market_adjacency',
'approach': '现有客户的新需求挖掘',
'risk_level': '中低',
'potential_reward': '中等'
})
# 业务模式相邻可能性
exploration_strategies.append({
'type': 'business_model_adjacency',
'approach': '现有能力的重新组合',
'risk_level': '中等',
'potential_reward': '高'
})
return exploration_strategies
def prepare_for_black_swan(self, system_design):
"""为黑天鹅事件做准备 - 最大化意外收益"""
preparation_strategy = {
'robustness_enhancement': self._enhance_system_robustness(),
'optionality_creation': self._create_strategic_options(),
'adaptive_capacity': self._build_adaptive_capabilities()
}
# 设计凸性暴露:小损失可能,大收益机会
convex_exposure = self._design_convex_exposure_strategy()
preparation_strategy['convex_exposure'] = convex_exposure
return preparation_strategy
def _design_convex_exposure_strategy(self):
"""设计凸性暴露策略 - 反脆弱的核心"""
return {
'small_bets_portfolio': self._create_small_bets_portfolio(),
'asymmetric_opportunities': self._identify_asymmetric_opportunities(),
'nonlinear_benefits': self._design_for_nonlinear_benefits()
}
📚 三、Python不确定性创新工具包:将预测变为创意的催化剂
📘1、构建概率思维驱动的创新系统
用Python实现基于概率思维的创新决策系统:
class ProbabilisticInnovationSystem:
def __init__(self):
self.scenario_database = {}
self.decision_frameworks = []
def develop_scenario_planning(self, base_prediction, uncertainty_factors):
"""开发情景规划 - 超越单一预测"""
# 生成多个可能未来情景
scenarios = self._generate_alternative_scenarios(base_prediction, uncertainty_factors)
# 为每个情景设计创新策略
scenario_strategies = {}
for scenario_name, scenario_details in scenarios.items():
strategy = self._develop_scenario_specific_strategy(scenario_details)
scenario_strategies[scenario_name] = strategy
# 创建适应性创新路线图
adaptive_roadmap = self._create_adaptive_innovation_roadmap(scenario_strategies)
return {
'scenarios': scenarios,
'strategies': scenario_strategies,
'adaptive_roadmap': adaptive_roadmap
}
def _generate_alternative_scenarios(self, base_prediction, uncertainties):
"""生成替代情景 - 打破预测确定性"""
scenarios = {
'base_case': {
'probability': 0.6,
'description': 'AI预测的主流情景',
'characteristics': base_prediction
},
'optimistic_case': {
'probability': 0.2,
'description': '突破性创新发生的情景',
'characteristics': self._amplify_positive_uncertainties(base_prediction, uncertainties)
},
'pessimistic_case': {
'probability': 0.15,
'description': '重大挫折发生的情景',
'characteristics': self._amplify_negative_uncertainties(base_prediction, uncertainties)
},
'black_swan_case': {
'probability': 0.05,
'description': '完全意外发生的情景',
'characteristics': self._generate_completely_novel_scenario(uncertainties)
}
}
return scenarios
def probabilistic_innovation_decision(self, innovation_ideas, uncertainty_context):
"""概率性创新决策 - 在不确定性中优化选择"""
evaluated_ideas = []
for idea in innovation_ideas:
# 评估每个想法的概率价值
probabilistic_value = self._evaluate_probabilistic_value(idea, uncertainty_context)
evaluated_ideas.append({
'idea': idea,
'probabilistic_value': probabilistic_value,
'investment_recommendation': self._make_investment_recommendation(probabilistic_value)
})
# 构建创新投资组合
investment_portfolio = self._construct_innovation_portfolio(evaluated_ideas)
return {
'evaluated_ideas': evaluated_ideas,
'investment_portfolio': investment_portfolio,
'portfolio_metrics': self._calculate_portfolio_metrics(investment_portfolio)
}
def _evaluate_probabilistic_value(self, idea, context):
"""评估概率价值 - 考虑不确定性下的期望价值"""
# 基础价值评估
base_value = self._assess_base_value(idea)
# 不确定性调整
uncertainty_adjustment = self._calculate_uncertainty_adjustment(idea, context)
# 期权价值计算(未来扩展可能性)
option_value = self._calculate_real_option_value(idea)
# 综合概率价值
probabilistic_value = {
'base_value': base_value,
'uncertainty_adjustment': uncertainty_adjustment,
'option_value': option_value,
'total_expected_value': base_value + uncertainty_adjustment + option_value
}
return probabilistic_value
📘2、Python实现创新期权管理
将金融期权思维应用于创新管理,用Python构建创新期权定价模型:
import numpy as np
from scipy.stats import norm
import matplotlib.pyplot as plt
class InnovationOptionPricer:
def __init__(self, risk_free_rate=0.02):
self.risk_free_rate = risk_free_rate
self.innovation_options = []
def calculate_innovation_option_value(self, innovation_project, market_conditions):
"""计算创新期权价值 - 量化不确定性价值"""
# 类比金融期权定价参数
S0 = innovation_project['present_value'] # 当前项目价值
K = innovation_project['investment_required'] # 执行价格(所需投资)
T = innovation_project['time_to_decision'] # 决策时间
sigma = market_conditions['volatility'] # 市场波动率
r = self.risk_free_rate # 无风险利率
# 使用Black-Scholes模型计算期权价值
option_value = self._black_scholes_call(S0, K, T, sigma, r)
# 调整创新特定因素
adjusted_value = self._adjust_for_innovation_factors(option_value, innovation_project)
return {
'financial_option_value': option_value,
'innovation_adjusted_value': adjusted_value,
'strategic_importance': self._assess_strategic_importance(innovation_project)
}
def _black_scholes_call(self, S, K, T, sigma, r):
"""Black-Scholes看涨期权定价"""
if T == 0:
return max(0, S - K)
d1 = (np.log(S / K) + (r + 0.5 * sigma ** 2) * T) / (sigma * np.sqrt(T))
d2 = d1 - sigma * np.sqrt(T)
call_value = (S * norm.cdf(d1) - K * np.exp(-r * T) * norm.cdf(d2))
return call_value
def _adjust_for_innovation_factors(self, base_value, project):
"""调整创新特定因素"""
adjustment_factors = {
'learning_value': self._calculate_learning_value(project),
'strategic_option_value': self._assess_strategic_options(project),
'ecosystem_effects': self._evaluate_ecosystem_impact(project)
}
total_adjustment = sum(adjustment_factors.values())
adjusted_value = base_value * (1 + total_adjustment)
return adjusted_value
def create_innovation_options_portfolio(self, available_projects, budget_constraint):
"""创建创新期权组合 - 优化不确定性投资"""
# 评估每个项目的期权价值
option_values = []
for project in available_projects:
option_value = self.calculate_innovation_option_value(project,
market_conditions={'volatility': 0.3}) # 示例波动率
option_values.append({
'project': project,
'option_value': option_value,
'investment_required': project['investment_required']
})
# 组合优化:在预算约束下最大化期权价值
optimal_portfolio = self._optimize_options_portfolio(option_values, budget_constraint)
return {
'available_options': option_values,
'optimal_portfolio': optimal_portfolio,
'portfolio_metrics': self._calculate_portfolio_metrics(optimal_portfolio)
}
def _optimize_options_portfolio(self, options, budget):
"""优化期权组合 - knapsack问题变种"""
# 按期权价值密度排序(价值/投资)
sorted_options = sorted(options,
key=lambda x: x['option_value']['innovation_adjusted_value'] / x['investment_required'],
reverse=True)
selected_projects = []
remaining_budget = budget
for option in sorted_options:
if option['investment_required'] <= remaining_budget:
selected_projects.append(option)
remaining_budget -= option['investment_required']
return {
'selected_projects': selected_projects,
'total_investment': budget - remaining_budget,
'remaining_budget': remaining_budget,
'total_option_value': sum(p['option_value']['innovation_adjusted_value'] for p in selected_projects)
}
📚 四、从预测到创造:Python开发者的不确定性领导力
📘1、构建不确定性环境下的创新领导力框架
在AI预测时代,Python开发者需要发展新的领导力模式:
📘2、Python实现不确定性领导力工具
class UncertaintyLeadershipFramework:
def __init__(self):
self.leadership_practices = []
self.team_adaptation_metrics = {}
def develop_uncertainty_leaders(self, team_capabilities, environment_uncertainty):
"""培养不确定性领导力"""
leadership_development_plan = {
'mindset_transformation': self._cultivate_probabilistic_mindset(),
'skill_development': self._build_uncertainty_skills(),
'practice_establishment': self._establish_new_leadership_practices()
}
# 根据环境不确定性调整培养重点
focus_areas = self._determine_development_focus(environment_uncertainty)
leadership_development_plan['focus_areas'] = focus_areas
return leadership_development_plan
def _cultivate_probabilistic_mindset(self):
"""培养概率思维模式"""
mindset_practices = [
{
'practice': '区间估计替代点估计',
'description': '用概率范围代替确定性预测',
'benefit': '更准确的不确定性表达'
},
{
'practice': '多情景思维',
'description': '同时考虑多个可能未来',
'benefit': '更好的准备和适应性'
},
{
'practice': '贝叶斯更新',
'description': '根据新证据持续更新信念',
'benefit': '持续学习和调整能力'
}
]
return mindset_practices
def lead_innovation_in_uncertainty(self, team, innovation_challenge):
"""在不确定性中领导创新"""
leadership_approach = {
'direction_setting': self._set_adaptive_direction(innovation_challenge),
'experimentation_culture': self._foster_experimentation_culture(team),
'decision_frameworks': self._establish_uncertainty_decision_frameworks(),
'learning_systems': self._build_rapid_learning_systems()
}
# 测量领导效果
leadership_effectiveness = self._measure_leadership_impact(team, innovation_challenge)
leadership_approach['effectiveness_metrics'] = leadership_effectiveness
return leadership_approach
def _set_adaptive_direction(self, challenge):
"""设定适应性方向 - 替代刚性目标"""
return {
'strategic_intent': self._define_flexible_intent(),
'learning_goals': self._set_learning_objectives(),
'adaptation_boundaries': self._establish_decision_guardrails(),
'progress_indicators': self._design_adaptive_metrics()
}
def build_anti_fragile_team(self, team_composition):
"""构建反脆弱团队 - 在压力中成长"""
team_design = {
'cognitive_diversity': self._ensure_cognitive_diversity(team_composition),
'psychological_safety': self._build_psychological_safety(),
'adaptive_processes': self._design_adaptive_work_processes(),
'learning_infrastructure': self._create_learning_infrastructure()
}
# 压力测试团队韧性
stress_test_results = self._stress_test_team_resilience(team_design)
team_design['resilience_metrics'] = stress_test_results
return team_design
📚 结论:将AI预测转化为创意起跑线
朋友们,经过这场深入的不确定性探索,我们应该清醒认识到:AI的预测不是创新的终点,而是我们创意的起点! 当AI告诉我们"最可能发生的未来"时,真正的创新者会问:“如何创造更美好的未来?如何让低概率高价值的情景成为现实?”
就像我经常对团队说的:“AI给了我们天气预报,但我们要做的是气候工程。” 用Python编程不仅仅是执行预测,更是用代码创造新的可能性。
最后,让我用一段Python代码来表达我们对确定性陷阱的反抗:
class DestinyDefyer:
def __init__(self):
self.manifesto = [
"预测是地图,创造是探险",
"不确定性不是风险,而是机会",
"最有趣的未来是那些尚未被预测的未来",
"我们的代码不是执行预言的工具,而是创造奇迹的魔法"
]
def defy_technological_destiny(self, ai_predictions, human_creativity):
"""反抗技术宿命 - 创造未被预测的未来"""
# 识别预测中的确定性陷阱
determin
到此这篇文章就介绍到这了,更多精彩内容请关注本人以前的文章或继续浏览下面的文章,创作不易,如果能帮助到大家,希望大家多多支持宝码香车~💕,若转载本文,一定注明本文链接。
更多专栏订阅推荐:
👍 html+css+js 绚丽效果
💕 vue
✈️ Electron
⭐️ js
📝 字符串
✍️ 时间对象(Date())操作
更多推荐
所有评论(0)