CVPR 2025

CVPR 2025 会议于 2025 年 6 月 10 日至 17 日在美国纳什维尔举行。

今年共提交了 13008 份有效论文,2878篇论文被接收,录用率为22.1%。这一录取数量再次刷新大会纪录,反映出计算机视觉领域的研究热度持续高涨。

图像超分辨率(Super-Resolution, SR)是计算机视觉领域的经典任务,旨在从低分辨率(Low-Resolution, LR)图像中恢复出高分辨率(High-Resolution, HR)图像。随着深度学习技术的快速发展,超分辨率技术在医学影像、遥感图像、数字摄影、监控安防等领域展现出巨大的应用价值。

现将超分辨率方向上接收的论文汇总如下,遗漏之处还请大家斧正。

图像超分

扩散模型

  1. FaithDiff: Unleashing Diffusion Priors for Faithful Image Super-resolution
  • Paper: https://arxiv.org/abs/2411.18824
  • Code: https://github.com/JyChen9811/FaithDiff
  • Keywords: Diffusion Priors, Faithful Super-resolution, Latent Diffusion Models
  • Features: 支持 8K 及以上超高清图像恢复,FP8 推理,CPU offloading,提供了 Real-Deg 数据集(238 张真实退化图像)
  • Team: Junyang Chen, Jinshan Pan, Jiangxin Dong (南京理工大学)
  1. PiSA-SR: Pixel-level and Semantic-level Adjustable Super-resolution: A Dual-LoRA Approach
  1. Arbitrary-steps Image Super-resolution via Diffusion Inversion
  1. PassionSR: Post-Training Quantization with Adaptive Scale in One-Step Diffusion based Image Super-Resolution
  1. Uncertainty-guided Perturbation for Image Super-Resolution Diffusion Model

任意尺度超分

  1. DiffFNO: Diffusion Fourier Neural Operator (Oral)
  1. HIIF: Hierarchical Encoding based Implicit Image Function for Continuous Super-resolution
  • Paper: https://arxiv.org/abs/2412.03748
  • Keywords: Implicit Neural Representation, Hierarchical Encoding, Continuous Super-resolution
  • Features: 层次化位置编码,多头线性注意力,平均 PSNR 提升 0.17dB
  • Team: University of Bristol; Netflix Inc.

轻量级模型

  1. CATANet: Efficient Content-Aware Token Aggregation for Lightweight Image Super-Resolution
  1. Progressive Focused Transformer for Single Image Super-Resolution
  1. TSP-Mamba: The Travelling Salesman Problem Meets Mamba for Image Super-resolution and Beyond
  • Paper: openaccess
  • Keywords: 旅行商问题,轻量级超分
  • Team: SmartMore Corporation,SSE, CUHK-Shenzhen

多模态

  1. The Power of Context: How Multimodality Improves Image Super-Resolution

盲超分 / 真实世界 / 移动端

  1. Adaptive Dropout: Unleashing Dropout across Layers for Generalizable Image Super-Resolution
  1. TSD-SR: One-Step Diffusion with Target Score Distillation for Real-World Image Super-Resolution
  1. Adversarial Diffusion Compression for Real-World Image Super-Resolution
  1. Edge-SD-SR: Low Latency and Parameter Efficient On-device Super-Resolution with Stable Diffusion via Bidirectional Conditioning

数据增强/感知

  1. ADD: A General Attribution-Driven Data Augmentation Framework for Boosting Image Super-Resolution
  1. Augmenting Perceptual Super-Resolution via Image Quality Predictors
  • Paper: https://arxiv.org/abs/2504.18524
  • Keywords: Perceptual Super-Resolution, Image Quality Predictors
  • Features: 运用强大的非参考图像质量评估(NR-IQA)模型
  • Team: 三星电子
  1. Auto-Encoded Supervision for Perceptual Image Super-Resolution
  1. Exploring Semantic Feature Discrimination for Perceptual Image Super-Resolution and Opinion-Unaware No-Reference Image Quality Assessment

其他方法

  1. AutoLUT: LUT-Based Image Super-Resolution with Automatic Sampling and Adaptive Residual Learning
  1. QMambaBSR: Burst Image Super-Resolution with Query State Space Model

视频超分

  1. BF-STVSR: B-Splines and Fourier-Best Friends for High Fidelity Spatial-Temporal Video Super-Resolution
  1. Efficient Video Super-Resolution for Real-time Rendering with Decoupled G-buffer Guidance
  1. EvEnhancer: Empowering Effectiveness, Efficiency and Generalizability for Continuous Space-Time Video Super-Resolution with Events (Highlight)
  1. Event-based Video Super-Resolution via State Space Models
  • Paper: openaccess
  • Keywords: Event-based, Mamba
  • Team: 新加坡国立大学
  1. PatchVSR: Breaking Video Diffusion Resolution Limits with Patch-wise Video Super-Resolution
  • Paper: openaccess
  • Keywords: Diffusion
  • Team: 清华,快手,北京理工大学
  1. Self-supervised ControlNet with Spatio-Temporal Mamba for Real-world Video Super-resolution
  1. VideoGigaGAN: Towards Detail-rich Video Super-Resolution

其他场景

  1. Decoupling Fine Detail and Global Geometry for Compressed Depth Map Super-Resolution
  1. DifIISR: Diffusion Model with Gradient Guidance for Infrared Image Super-Resolution
  1. DORNet: A Degradation Oriented and Regularized Network for Blind Depth Super-Resolution
  1. Latent Space Super-Resolution for Higher-Resolution Image Generation with Diffusion Models
  1. PIDSR: Complementary Polarized Image Demosaicing and Super-Resolution
  1. S2Gaussian: Sparse-View Super-Resolution 3D Gaussian Splatting
  1. Volume Tells: Dual Cycle-Consistent Diffusion for 3D Fluorescence Microscopy De-noising and Super-Resolution

总结

从本届接收的论文来看,CVPR 2025 超分辨率领域呈现以下几个明显趋势:

  1. 扩散模型持续主导:基于 Stable Diffusion 的方法仍然是主流,包括 FaithDiff、PiSA-SR、TSD-SR 等,这些方法在感知质量和真实感方面表现出色。

  2. 任意尺度超分成为热点:DiffFNO、HIIF 等方法在任意尺度超分辨率方面取得突破,支持连续倍率放大,特别在大倍率(8x、12x)下表现优异。

  3. 效率与质量的平衡:轻量级模型(CATANet)和快速推理方法(DiffFNO 的自适应 ODE 求解器)受到关注,旨在解决实际应用中的部署问题。

  4. 可调节性和交互性:PiSA-SR 等方法支持用户根据偏好调节像素级保真度和语义级细节,体现了个性化需求。

  5. 跨模态和语义理解:越来越多的方法结合语义信息和多模态特征,提升超分辨率结果的语义一致性和感知质量。

  6. 真实世界应用导向:针对真实世界退化、移动端部署、视频超分等实际应用场景的研究显著增加。

总体而言,CVPR 2025 超分辨率研究在保持高质量重建的同时,更加注重实用性、效率和用户体验,为该领域的进一步发展奠定了坚实基础。

参考资料

  1. CVPR 2025 Official Website

  2. CVPR 2025 Accepted Papers

  3. CVPR2025|底层视觉相关论文汇总

  4. CVPR 2025 | Papers-with-Code | 底层视觉合集

  5. CVPR2025图像超分论文集合

(注:文档部分内容由 AI 生成)

Logo

有“AI”的1024 = 2048,欢迎大家加入2048 AI社区

更多推荐