详解和实测吴恩达4种Agentic 工作流之中,我测试了各种框架诸如反思、工具调用、规划、多智能体,在学习了其中各种Prompt设计后,有了一些新的认识。

对于特定的任务来说,没有万能的Prompt,只有一些通用的模式,要完成这个任务还需要这个任务特定的Example。另外,你一定要PUA它,强烈的鼓励它,使用类似MUST、奖励等字眼来PUA它,这样能让大模型更好的跟随指令。

对你没看错,如果你想要更好的达成你的目的,你一定要给它Example,我在测试各个框架过程中,没有一个不包含Example。虽说网上也有介绍Zero Shot的Prompt,比如Let’s think step by step,但遇到稍微复杂点的任务,它就不一定能解决了,它只是分步思考,并不是步步为营。

一个精心设计完成特定任务的Prompt大体需要包含这几部分:

  1. 解决任务的方法
  2. 任务的输入和输出
  3. 任务的Example,3到5个左右。
  4. 任务的历史纪录,如果有的话
  5. 用户输入的问题。

话不多说,我们来看看4种LLM Agentic工作流Prompt设计,相信大家一定能有所收获。

1. 规划Prompt设计案例

  • ReAct

ReAct 提供了一种更易于人类理解、诊断和控制的决策和推理过程。它的典型流程如下图所示,可以用一个有趣的循环来描述:思考(Thought)→ 行动(Action)→ 观察(Observation),简称TAO循环。

思考(Thought) 首先,面对一个问题,我们需要进行深入的思考。这个思考过程是关于如何定义问题、确定解决问题所需的关键信息和推理步骤。行动(Action) 确定了思考的方向后,接下来就是行动的时刻。根据我们的思考,采取相应的措施或执行特定的任务,以期望推动问题向解决的方向发展。观察(Observation) 行动之后,我们必须仔细观察结果。这一步是检验我们的行动是否有效,是否接近了问题的答案。

循环迭代以上流程,如下图所示。

img

Prompt设计如下所示,包含说明解决问题的方法、输入和输出、样例和用户问题。

用交替进行的"思考、行动、观察"三个步骤来解决问答任务。思考可以对当前情况进行推理,而行动必须是以下三种类型:
(1) Search[entity],在维基百科上搜索确切的实体,并返回第一个段落(如果存在)。如果不存在,将返回一些相似的实体以供搜索。
(2) Lookup[keyword],在上一次成功通过Search找到的段落中返回包含关键字的下一句。
(3) Finish[answer],返回答案并结束任务。
你可以采取必要的步骤。确保你的回应必须严格遵循上述格式,尤其是行动必须是以上三种类型之一。
以下是一些参考示例:
问题: 科罗拉多造山运动东部地区的海拔范围是多少?
思考1: 我需要搜索科罗拉多造山运动,找到科罗拉多造山运动东部地区的范围,然后找到该地区的海拔范围。
行动1: 搜索[科罗拉多造山运动]
观察1: 科罗拉多造山运动是科罗拉多州及周边地区的一次造山运动(造山运动)。
思考2: 它没有提到东部地区。所以我需要查找东部地区的信息。...
(例子结束)
Question:{question}
{scratchpad}
  • CoT

img

想让模型按照思维链这样的方式思考,你一定要给他Example,并且针对特定的任务。中如何设计的CoT式Prompt:

COT_AGENT_REFLECT_INSTRUCTION = """通过思考来解决问答任务,然后用你的答案完成任务。
思考可以推理当前情况。Finish[answer] 返回答案并完成任务。你将获得一些背景信息,你应该利用这些信息来帮助你回答问题。
以下是一些示例::
{examples}
(END OF EXAMPLES)

相关背景: {context}
问题: {question}{scratchpad}"""

Example

COT = """相关背景: 尼罗河是世界上最长的河流,长度约为6,650公里(4,132英里)。它流经东北非的十一国,包括埃及、苏丹和乌干达。
问题: 世界上最长的河流是什么?
思考: 这个问题询问世界上最长的河流,根据提供的背景信息,我知道是尼罗河。
行动: 完成[尼罗河]
...
"""

2. 反思Prompt设计案例

反思或者说精炼,是一种在现有问答基础上更进一步地指导模型进行自我优化和排除错误答案的过程。Reflexion框架中设计的Prompt如下,让他能够根据历史记录逐步排除选项,更多的关于Reflexion框架设计,请参考本人公众号文章《万字长文深度解析Agent反思工作流框架Reflexion下篇:ReflectionAgent workflow》。

  • Prompt
你是一个能够通过自我反思来改进的高级推理代理。你将获得之前的推理测试流程,在之前的测试中你尝试访问Docstore API并回答了问题。由于你猜错了答案(使用了Finish[<answer>]),或者用完了设定的推理步骤数,你未能成功回答问题。诊断失败的可能原因,并制定一个新的、简明的高级计划,旨在减轻同样的失败。要求必须使用完整的语句来回复。
这里有一些例子:
{examples}
之前的尝试:
问题:{question}{scratchpad}
反思:
  • Example
之前的尝试:
问题: 《罗马议定书》由三位总理签署,其中一位被暗杀是作为什么的一部分?
思考1: 我需要搜索《罗马议定书》,找到这三位总理
...
行动3: 完成[第二次世界大战]

反思: 我搜索了参与签署的一位总理,然后试图立即回答。我应该搜索每位总理,然后查看每位总理的“死亡”信息,以获取更多信息后再回答。

img

3. 工具调用Prompt设计案例

如果你有大量的工具函数可能会被调用,但你显然无法将所有Tools发给LLM,这可能会超过大模型的Token限制。你要怎么处理呢?一个简单的方法是采用分组,尽量将类似的函数组合到一起,然后再选择。我之前在《HuggingGPT解析》文章中有讨论,HuggingGPT使用HuggingFace的模型进行推理任务,要知道在当时HuggingFace上有大约673个模型,其接口和任务描述大约**2765000个字符,我们是不可能给它一次上传到LLM的。**好在,HuggingFace的模型是分类,分为19个类别,其中15个NLP任务类型,2个Audio任务类型,3个CV的任务类型。如下所示关于任务描述,他也包含了那句神奇的Think step by step,更多的关于HuggingGPT的Prompt设计和流程设计,请参考我的公众号文章《万字长文深度解析规划框架:HuggingGPT》。

任务必须从以下选项中选择:“token-classification”、“text2text-generation”、“summarization”、“translation”、“question-answering”、“conversational”、“text-generation”、“sentence-similarity”、“tabular-classification”、“object-detection”、“image-classification”、“image-to-image”、“image-to-text”、“text-to-image”、“text-to-video”、“visual-question-answering”、“document-question-answering”、“image-segmentation”、“depth-estimation”、“text-to-speech”、“automatic-speech-recognition”、“audio-to-audio”、“audio-classification”、“canny-control”、“hed-control”、“mlsd-control”、“normal-control”、“openpose-control”、“canny-text-to-image”、“depth-text-to-image”、“hed-text-to-image”、“mlsd-text-to-image”、“normal-text-to-image”、“openpose-text-to-image”、“seg-text-to-image”。可能存在多个相同类型的任务。逐步思考解决用户请求所需的所有任务。解析出尽可能少的任务,同时确保能够解决用户请求。注意任务之间的依赖关系和顺序。如果无法解析用户输入,你需要回复空 JSON [],否则必须直接返回 JSON。

img

另外,在使用工具调用时候,由于大模型有时候会捏造参数,你一定要在Prompt中提示它不要捏造任何参数,如果未提供,请求用户提供,这需要针对不同模型多次尝试优化。

4. 多智能体Prompt设计

多智能体为何有效,大概源于人类的分工合作思想,Prompt如果设定过多的不同任务,很可能会导致大模型无法准确跟随指令,因此给不同的智能体设计专用的Prompt就能让它们工作的更高效,具体案例可以参考我使用AutoGen多智能体框架设计的对话登机服务。

合作使我们能够知道比我们自己所能知道的更多。它赋予我们不同的思维方式,让我们接触到原本无法获得的信息,并在我们共同努力实现共同目标的过程中将想法结合起来。

5. 总结

以上就是我在研究这4种LLM Agentic工作流中对于Prompt提示所得与思考。

如果您渴望更全面地理解这一领域的核心理论与实践,以下这部图解GPT著作将是您不可或缺的伴侣。

想入门 AI 大模型却找不到清晰方向?备考大厂 AI 岗还在四处搜集零散资料?别再浪费时间啦!2025 年 AI 大模型全套学习资料已整理完毕,从学习路线到面试真题,从工具教程到行业报告,一站式覆盖你的所有需求,现在全部免费分享

👇👇扫码免费领取全部内容👇👇

一、学习必备:100+本大模型电子书+26 份行业报告 + 600+ 套技术PPT,帮你看透 AI 趋势

想了解大模型的行业动态、商业落地案例?大模型电子书?这份资料帮你站在 “行业高度” 学 AI

1. 100+本大模型方向电子书

在这里插入图片描述

2. 26 份行业研究报告:覆盖多领域实践与趋势

报告包含阿里、DeepSeek 等权威机构发布的核心内容,涵盖:

  • 职业趋势:《AI + 职业趋势报告》《中国 AI 人才粮仓模型解析》;
  • 商业落地:《生成式 AI 商业落地白皮书》《AI Agent 应用落地技术白皮书》;
  • 领域细分:《AGI 在金融领域的应用报告》《AI GC 实践案例集》;
  • 行业监测:《2024 年中国大模型季度监测报告》《2025 年中国技术市场发展趋势》。

3. 600+套技术大会 PPT:听行业大咖讲实战

PPT 整理自 2024-2025 年热门技术大会,包含百度、腾讯、字节等企业的一线实践:

在这里插入图片描述

  • 安全方向:《端侧大模型的安全建设》《大模型驱动安全升级(腾讯代码安全实践)》;
  • 产品与创新:《大模型产品如何创新与创收》《AI 时代的新范式:构建 AI 产品》;
  • 多模态与 Agent:《Step-Video 开源模型(视频生成进展)》《Agentic RAG 的现在与未来》;
  • 工程落地:《从原型到生产:AgentOps 加速字节 AI 应用落地》《智能代码助手 CodeFuse 的架构设计》。

二、求职必看:大厂 AI 岗面试 “弹药库”,300 + 真题 + 107 道面经直接抱走

想冲字节、腾讯、阿里、蔚来等大厂 AI 岗?这份面试资料帮你提前 “押题”,拒绝临场慌!

1. 107 道大厂面经:覆盖 Prompt、RAG、大模型应用工程师等热门岗位

面经整理自 2021-2025 年真实面试场景,包含 TPlink、字节、腾讯、蔚来、虾皮、中兴、科大讯飞、京东等企业的高频考题,每道题都附带思路解析

2. 102 道 AI 大模型真题:直击大模型核心考点

针对大模型专属考题,从概念到实践全面覆盖,帮你理清底层逻辑:

3. 97 道 LLMs 真题:聚焦大型语言模型高频问题

专门拆解 LLMs 的核心痛点与解决方案,比如让很多人头疼的 “复读机问题”:


三、路线必明: AI 大模型学习路线图,1 张图理清核心内容

刚接触 AI 大模型,不知道该从哪学起?这份「AI大模型 学习路线图」直接帮你划重点,不用再盲目摸索!

在这里插入图片描述

路线图涵盖 5 大核心板块,从基础到进阶层层递进:一步步带你从入门到进阶,从理论到实战。

img

L1阶段:启航篇丨极速破界AI新时代

L1阶段:了解大模型的基础知识,以及大模型在各个行业的应用和分析,学习理解大模型的核心原理、关键技术以及大模型应用场景。

img

L2阶段:攻坚篇丨RAG开发实战工坊

L2阶段:AI大模型RAG应用开发工程,主要学习RAG检索增强生成:包括Naive RAG、Advanced-RAG以及RAG性能评估,还有GraphRAG在内的多个RAG热门项目的分析。

img

L3阶段:跃迁篇丨Agent智能体架构设计

L3阶段:大模型Agent应用架构进阶实现,主要学习LangChain、 LIamaIndex框架,也会学习到AutoGPT、 MetaGPT等多Agent系统,打造Agent智能体。

img

L4阶段:精进篇丨模型微调与私有化部署

L4阶段:大模型的微调和私有化部署,更加深入的探讨Transformer架构,学习大模型的微调技术,利用DeepSpeed、Lamam Factory等工具快速进行模型微调,并通过Ollama、vLLM等推理部署框架,实现模型的快速部署。

img

L5阶段:专题集丨特训篇 【录播课】

img
四、资料领取:全套内容免费抱走,学 AI 不用再找第二份

不管你是 0 基础想入门 AI 大模型,还是有基础想冲刺大厂、了解行业趋势,这份资料都能满足你!
现在只需按照提示操作,就能免费领取:

👇👇扫码免费领取全部内容👇👇

2025 年想抓住 AI 大模型的风口?别犹豫,这份免费资料就是你的 “起跑线”!

Logo

有“AI”的1024 = 2048,欢迎大家加入2048 AI社区

更多推荐