收藏!LangGraph+FastAPI打造生产就绪的LLM API服务,超详细教程
本文详细介绍了如何结合LangGraph和FastAPI,将大语言模型(LLM)工作流封装为生产就绪的REST API服务。从项目设置、构建简单工作流,到添加错误处理、重试机制、输入验证和日志记录等生产级功能,再到使用FastAPI暴露工作流、测试API,以及部署扩展方案。通过这一系列步骤,读者可以学会构建可从任何地方访问的可扩展AI智能体服务,为开发聊天机器人、文档处理器等AI应用奠定基础。擅长
本文详细介绍了如何结合LangGraph和FastAPI,将大语言模型(LLM)工作流封装为生产就绪的REST API服务。从项目设置、构建简单工作流,到添加错误处理、重试机制、输入验证和日志记录等生产级功能,再到使用FastAPI暴露工作流、测试API,以及部署扩展方案。通过这一系列步骤,读者可以学会构建可从任何地方访问的可扩展AI智能体服务,为开发聊天机器人、文档处理器等AI应用奠定基础。
Large Language Models (LLMs) 擅长推理,但现实世界的应用往往需要有状态、多步骤的工作流。这就是 LangGraph 的用武之地——它让你可以通过由 LLM 驱动的节点图来构建智能工作流。
但如果你想把这些工作流暴露为 APIs,让其他应用(或用户)可以调用呢?这时候 FastAPI 就派上用场了——一个轻量级、高性能的 Python Web 框架。
在这篇指南中,你将学习如何将 LangGraph 工作流封装在 FastAPI 中,变成一个生产就绪的 endpoint。
为什么选择 LangGraph + FastAPI?
- • LangGraph:创建多步骤、有状态的 LLM 工作流(例如,多智能体推理、数据处理)。
- • FastAPI:轻松将这些工作流暴露为 REST APIs,以便与 Web 应用、微服务或自动化流水线集成。
- • 结合两者:构建可从任何地方访问的可扩展 AI 智能体。
1. 项目设置
创建一个新项目文件夹并安装依赖:
mkdir langgraph_fastapi_demo && cd langgraph_fastapi_demo
python -m venv .venv
source .venv/bin/activate # 在 Windows 上:.venv\Scripts\activate
pip install fastapi uvicorn langgraph langchain-openai python-dotenv
创建一个 .env
文件来存储你的 API 密钥:
OPENAI_API_KEY=你的_openai_密钥_在此
2. 构建一个简单的 LangGraph 工作流
让我们构建一个简单的 LangGraph,它接收用户的问题并返回 AI 生成的答案。
# workflow.py
from langgraph.graph import StateGraph, START, END
from langchain_openai import ChatOpenAI
from langchain_core.messages import HumanMessage
import os
from dotenv import load_dotenv
load_dotenv()
llm = ChatOpenAI(model="gpt-4o") # 可以切换到 gpt-4o-mini 以降低成本
# 定义状态
defanswer_question(state: dict) -> dict:
user_input = state["user_input"]
response = llm.invoke([HumanMessage(content=user_input)])
return {"answer": response.content}
# 构建图
workflow = StateGraph(dict)
workflow.add_node("answer", answer_question)
workflow.add_edge(START, "answer")
workflow.add_edge("answer", END)
graph = workflow.compile()
这个图:
- • 接收 user_input
- • 将其发送到 GPT-4o
- • 返回 AI 生成的响应
3. 让它生产就绪
在向全世界开放之前,让我们为真实用例加固它。
错误处理与重试
LLM APIs 可能会失败或超时。用 try/except 包装调用:
from tenacity import retry, wait_exponential, stop_after_attempt
@retry(wait=wait_exponential(multiplier=1, min=2, max=10), stop=stop_after_attempt(3))
defsafe_invoke_llm(message):
return llm.invoke([HumanMessage(content=message)])
defanswer_question(state: dict) -> dict:
user_input = state["user_input"]
try:
response = safe_invoke_llm(user_input)
return {"answer": response.content}
except Exception as e:
return {"answer": f"错误:{str(e)}"}
输入验证
我们不想让别人发送巨大的数据负载。添加 Pydantic 约束:
from pydantic import BaseModel, constr
classRequestData(BaseModel):
user_input: constr(min_length=1, max_length=500) # 限制输入大小
日志记录
添加日志以提高可见性:
import logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
defanswer_question(state: dict) -> dict:
logger.info(f"收到输入:{state['user_input']}")
response = safe_invoke_llm(state['user_input'])
logger.info("已生成 LLM 响应")
return {"answer": response.content}
4. 使用 FastAPI 暴露工作流
现在,让我们将这个工作流封装在 FastAPI 中。
# main.py
from fastapi import FastAPI
from workflow import graph, RequestData
app = FastAPI()
@app.post("/run")
asyncdefrun_workflow(data: RequestData):
result = graph.invoke({"user_input": data.user_input})
return {"result": result["answer"]}
运行服务器:
uvicorn main:app --reload
5. 测试 API
你可以使用 curl 测试:
curl -X POST "http://127.0.0.1:8000/run" \
-H "Content-Type: application/json" \
-d '{"user_input":"什么是 LangGraph?"}'
或者在浏览器中打开 http://127.0.0.1:8000/docs
—— FastAPI 会自动为你生成 Swagger UI!
这个交互式 UI 让你直接在浏览器中测试你的 endpoint。
6. 扩展与部署
为生产环境做准备的几个步骤:
- • 异步执行:FastAPI 是异步原生的。对于多个 LLM 调用,让函数变成异步的。
- • 工作进程:使用多进程运行以实现并发:
uvicorn main:app --workers 4
- • Docker 化:
FROM python:3.11-slim WORKDIR /app COPY . . RUN pip install -r requirements.txt CMD ["uvicorn", "main:app", "--host", "0.0.0.0", "--port", "8000"]
- • 认证:使用 API 密钥或 JWT tokens 来保护 endpoints(第二部分即将推出)。
7. 架构概览
以下是整体连接方式:
POST /run
Client
FastAPI
LangGraph
OpenAI_API
Response
这个简单的架构让你可以将任何 LangGraph 变成一个 API。
8. 结论
通过几个简单的步骤,我们:
- • 构建了一个 LangGraph 工作流
- • 使用 FastAPI 将其暴露为 REST API
- • 添加了生产就绪的功能(验证、重试、日志)
- • 为可扩展的 AI 微服务奠定了基础
这个设置可以支持从聊天机器人到文档处理器再到 AI SaaS 产品的各种应用。
如何系统学习掌握AI大模型?
AI大模型作为人工智能领域的重要技术突破,正成为推动各行各业创新和转型的关键力量。抓住AI大模型的风口,掌握AI大模型的知识和技能将变得越来越重要。
学习AI大模型是一个系统的过程,需要从基础开始,逐步深入到更高级的技术。
这里给大家精心整理了一份
全面的AI大模型学习资源
,包括:AI大模型全套学习路线图(从入门到实战)、精品AI大模型学习书籍手册、视频教程、实战学习、面试题等,资料免费分享
!
1. 成长路线图&学习规划
要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。
这里,我们为新手和想要进一步提升的专业人士准备了一份详细的学习成长路线图和规划。可以说是最科学最系统的学习成长路线。
2. 大模型经典PDF书籍
书籍和学习文档资料是学习大模型过程中必不可少的,我们精选了一系列深入探讨大模型技术的书籍和学习文档,它们由领域内的顶尖专家撰写,内容全面、深入、详尽,为你学习大模型提供坚实的理论基础。(书籍含电子版PDF)
3. 大模型视频教程
对于很多自学或者没有基础的同学来说,书籍这些纯文字类的学习教材会觉得比较晦涩难以理解,因此,我们提供了丰富的大模型视频教程,以动态、形象的方式展示技术概念,帮助你更快、更轻松地掌握核心知识。
4. 大模型行业报告
行业分析主要包括对不同行业的现状、趋势、问题、机会等进行系统地调研和评估,以了解哪些行业更适合引入大模型的技术和应用,以及在哪些方面可以发挥大模型的优势。
5. 大模型项目实战
学以致用 ,当你的理论知识积累到一定程度,就需要通过项目实战,在实际操作中检验和巩固你所学到的知识,同时为你找工作和职业发展打下坚实的基础。
6. 大模型面试题
面试不仅是技术的较量,更需要充分的准备。
在你已经掌握了大模型技术之后,就需要开始准备面试,我们将提供精心整理的大模型面试题库,涵盖当前面试中可能遇到的各种技术问题,让你在面试中游刃有余。
全套的AI大模型学习资源已经整理打包,有需要的小伙伴可以
微信扫描下方CSDN官方认证二维码
,免费领取【保证100%免费
】
更多推荐
所有评论(0)