第13课:Cursor AI 高级功能
本课程深入讲解CursorAI高级功能,包含三大核心模块:1. 自定义提示词系统:详细讲解提示词设计原则、模板管理系统及使用示例,涵盖WebAPI、数据库模型等场景的提示词配置。2. 代码模板创建:通过Jinja2模板引擎实现动态代码生成,提供Flask应用、SQLAlchemy模型等完整模板案例,并配有可视化模板管理工具。3. 工作流自动化:构建可编排的任务流水线,包含代码检查、测试运行、构建部
课程概述
本课程将深入学习Cursor AI的高级功能,包括自定义提示词、代码模板创建、工作流自动化等,帮助你进一步提升开发效率,实现个性化的AI辅助开发体验。
学习目标
- 掌握自定义提示词的创建和使用方法
- 学会创建和管理代码模板
- 理解工作流自动化的实现原理
- 掌握高级功能配置和优化技巧
课程大纲
1. 自定义提示词
1.1 提示词基础概念
- 提示词定义:指导AI生成代码的指令和描述
- 提示词结构:包含任务描述、约束条件、示例等
- 提示词类型:功能型、优化型、重构型、测试型等
- 提示词效果:影响AI生成代码的质量和准确性
1.2 提示词设计原则
- 明确性:清晰描述需求和目标
- 具体性:提供具体的输入输出要求
- 约束性:明确代码的限制和规范
- 示例性:提供参考示例和代码风格
1.3 提示词模板系统
// 提示词配置文件
{
"prompts": {
"web_api": {
"name": "Web API开发",
"description": "生成RESTful API接口",
"template": "请创建一个{framework}的{method}接口,路径为{path},功能是{function}。要求:\n1. 包含完整的错误处理\n2. 添加输入验证\n3. 返回标准JSON格式\n4. 包含API文档注释\n\n示例输入:{input_example}\n期望输出:{output_example}",
"variables": {
"framework": "Flask",
"method": "POST",
"path": "/api/users",
"function": "创建新用户",
"input_example": "{\"username\": \"testuser\", \"email\": \"test@example.com\"}",
"output_example": "{\"success\": true, \"user_id\": 1, \"message\": \"用户创建成功\"}"
},
"tags": ["api", "web", "backend"],
"usage_count": 0
},
"database_model": {
"name": "数据库模型",
"description": "生成数据库模型类",
"template": "请创建一个{orm}的{model_name}模型类,包含以下字段:{fields}。要求:\n1. 使用适当的字段类型\n2. 添加字段验证\n3. 包含关系定义\n4. 添加模型方法\n\n数据库类型:{db_type}",
"variables": {
"orm": "SQLAlchemy",
"model_name": "User",
"fields": "id, username, email, password, created_at, updated_at",
"db_type": "MySQL"
},
"tags": ["database", "model", "orm"],
"usage_count": 0
},
"test_case": {
"name": "测试用例生成",
"description": "为代码生成测试用例",
"template": "请为以下{language}代码生成完整的测试用例:\n\n{code}\n\n要求:\n1. 使用{test_framework}框架\n2. 测试正常情况和异常情况\n3. 包含边界条件测试\n4. 使用Mock对象模拟依赖\n5. 达到{coverage}%的测试覆盖率",
"variables": {
"language": "Python",
"test_framework": "pytest",
"coverage": "90"
},
"tags": ["testing", "unit_test", "quality"],
"usage_count": 0
}
}
}
1.4 提示词管理系统
# 提示词管理类
import json
import os
from typing import Dict, List, Optional
from datetime import datetime
class PromptManager:
"""提示词管理类"""
def __init__(self, config_file: str = "prompts_config.json"):
self.config_file = config_file
self.prompts = self._load_prompts()
def _load_prompts(self) -> Dict:
"""加载提示词配置"""
if os.path.exists(self.config_file):
with open(self.config_file, 'r', encoding='utf-8') as f:
return json.load(f)
return {"prompts": {}}
def _save_prompts(self):
"""保存提示词配置"""
with open(self.config_file, 'w', encoding='utf-8') as f:
json.dump(self.prompts, f, ensure_ascii=False, indent=2)
def create_prompt(self, prompt_id: str, name: str, description: str,
template: str, variables: Dict, tags: List[str]) -> bool:
"""创建新的提示词"""
if prompt_id in self.prompts["prompts"]:
return False
self.prompts["prompts"][prompt_id] = {
"name": name,
"description": description,
"template": template,
"variables": variables,
"tags": tags,
"usage_count": 0,
"created_at": str(datetime.now())
}
self._save_prompts()
return True
def get_prompt(self, prompt_id: str) -> Optional[Dict]:
"""获取提示词"""
return self.prompts["prompts"].get(prompt_id)
def render_prompt(self, prompt_id: str, **kwargs) -> Optional[str]:
"""渲染提示词模板"""
prompt = self.get_prompt(prompt_id)
if not prompt:
return None
try:
rendered = prompt["template"]
for key, value in kwargs.items():
if key in prompt["variables"]:
rendered = rendered.replace(f"{{{key}}}", str(value))
# 更新使用次数
prompt["usage_count"] += 1
self._save_prompts()
return rendered
except Exception as e:
print(f"渲染提示词失败: {e}")
return None
def search_prompts(self, query: str, tags: List[str] = None) -> List[Dict]:
"""搜索提示词"""
results = []
query_lower = query.lower()
for prompt_id, prompt in self.prompts["prompts"].items():
# 文本搜索
if (query_lower in prompt["name"].lower() or
query_lower in prompt["description"].lower()):
results.append({"id": prompt_id, **prompt})
continue
# 标签搜索
if tags and any(tag in prompt["tags"] for tag in tags):
results.append({"id": prompt_id, **prompt})
return results
def update_prompt(self, prompt_id: str, **kwargs) -> bool:
"""更新提示词"""
if prompt_id not in self.prompts["prompts"]:
return False
prompt = self.prompts["prompts"][prompt_id]
for key, value in kwargs.items():
if key in prompt:
prompt[key] = value
prompt["updated_at"] = str(datetime.now())
self._save_prompts()
return True
def delete_prompt(self, prompt_id: str) -> bool:
"""删除提示词"""
if prompt_id in self.prompts["prompts"]:
del self.prompts["prompts"][prompt_id]
self._save_prompts()
return True
return False
1.5 提示词使用示例
# 使用自定义提示词生成代码
def generate_web_api():
"""使用Web API提示词生成代码"""
prompt_manager = PromptManager()
# 渲染提示词
prompt = prompt_manager.render_prompt(
"web_api",
framework="Flask",
method="POST",
path="/api/products",
function="创建新产品",
input_example='{"name": "iPhone 15", "price": 5999, "category": "electronics"}',
output_example='{"success": true, "product_id": 123, "message": "产品创建成功"}'
)
if prompt:
print("生成的提示词:")
print(prompt)
# 这里可以调用AI API生成代码
# generated_code = ai_generate_code(prompt)
# return generated_code
return None
# 使用数据库模型提示词
def generate_database_model():
"""使用数据库模型提示词生成代码"""
prompt_manager = PromptManager()
prompt = prompt_manager.render_prompt(
"database_model",
orm="SQLAlchemy",
model_name="Product",
fields="id, name, description, price, category, stock, created_at, updated_at",
db_type="MySQL"
)
if prompt:
print("生成的提示词:")
print(prompt)
return None
2. 代码模板创建
2.1 模板系统架构
- 模板引擎:基于Jinja2的模板渲染系统
- 模板存储:本地文件系统和云端同步
- 模板分类:按项目类型、语言、功能分类
- 模板版本:支持模板版本管理和更新
2.2 模板创建工具
# 代码模板创建工具
from jinja2 import Template, Environment, FileSystemLoader
import os
import re
from typing import Optional, List
class CodeTemplateManager:
"""代码模板管理类"""
def __init__(self, template_dir: str = "templates"):
self.template_dir = template_dir
self.env = Environment(loader=FileSystemLoader(template_dir))
self.env.trim_blocks = True
self.env.lstrip_blocks = True
# 注册自定义过滤器
self.env.filters['snake_case'] = self._to_snake_case
self.env.filters['camel_case'] = self._to_camel_case
self.env.filters['pluralize'] = self._pluralize
def _to_snake_case(self, text: str) -> str:
"""转换为蛇形命名"""
return re.sub(r'(?<!^)(?=[A-Z])', '_', text).lower()
def _to_camel_case(self, text: str) -> str:
"""转换为驼峰命名"""
return ''.join(word.capitalize() for word in text.split('_'))
def _pluralize(self, text: str) -> str:
"""复数化处理"""
if text.endswith('y'):
return text[:-1] + 'ies'
elif text.endswith(('s', 'x', 'z', 'ch', 'sh')):
return text + 'es'
else:
return text + 's'
def create_template(self, template_name: str, template_content: str,
template_type: str = "general") -> bool:
"""创建新的代码模板"""
template_path = os.path.join(self.template_dir, template_type, f"{template_name}.jinja2")
# 确保目录存在
os.makedirs(os.path.dirname(template_path), exist_ok=True)
try:
with open(template_path, 'w', encoding='utf-8') as f:
f.write(template_content)
return True
except Exception as e:
print(f"创建模板失败: {e}")
return False
def render_template(self, template_name: str, template_type: str = "general",
**context) -> Optional[str]:
"""渲染代码模板"""
try:
template_path = f"{template_type}/{template_name}.jinja2"
template = self.env.get_template(template_path)
return template.render(**context)
except Exception as e:
print(f"渲染模板失败: {e}")
return None
def list_templates(self, template_type: str = None) -> List[str]:
"""列出可用模板"""
templates = []
if template_type:
type_dir = os.path.join(self.template_dir, template_type)
if os.path.exists(type_dir):
for file in os.listdir(type_dir):
if file.endswith('.jinja2'):
templates.append(file[:-7]) # 移除.jinja2扩展名
else:
for root, dirs, files in os.walk(self.template_dir):
for file in files:
if file.endswith('.jinja2'):
rel_path = os.path.relpath(os.path.join(root, file), self.template_dir)
templates.append(rel_path[:-7])
return templates
2.3 常用代码模板
{# Flask应用模板 #}
{# templates/flask/app.jinja2 #}
from flask import Flask, request, jsonify
from flask_sqlalchemy import SQLAlchemy
from flask_cors import CORS
import os
app = Flask(__name__)
app.config['SQLALCHEMY_DATABASE_URI'] = os.environ.get('DATABASE_URL', 'sqlite:///app.db')
app.config['SQLALCHEMY_TRACK_MODIFICATIONS'] = False
app.config['SECRET_KEY'] = os.environ.get('SECRET_KEY', 'dev-secret-key')
db = SQLAlchemy(app)
CORS(app)
# 模型定义
class {{ model_name }}(db.Model):
id = db.Column(db.Integer, primary_key=True)
{% for field in fields %}
{{ field.name }} = db.Column(db.{{ field.type }}{% if field.length %}({{ field.length }}){% endif %}{% if field.nullable == false %}, nullable=False{% endif %})
{% endfor %}
created_at = db.Column(db.DateTime, default=db.func.current_timestamp())
updated_at = db.Column(db.DateTime, default=db.func.current_timestamp(), onupdate=db.func.current_timestamp())
# 路由定义
@app.route('/api/{{ model_name|pluralize }}', methods=['GET'])
def get_{{ model_name|pluralize }}():
"""获取所有{{ model_name }}"""
try:
{{ model_name|pluralize }} = {{ model_name }}.query.all()
return jsonify({
'success': True,
'data': [{{ model_name|snake_case }}.to_dict() for {{ model_name|snake_case }} in {{ model_name|pluralize }}]
}), 200
except Exception as e:
return jsonify({
'success': False,
'error': str(e)
}), 500
@app.route('/api/{{ model_name|pluralize }}/<int:{{ model_name|snake_case }}_id>', methods=['GET'])
def get_{{ model_name }}({{ model_name|snake_case }}_id):
"""获取单个{{ model_name }}"""
try:
{{ model_name|snake_case }} = {{ model_name }}.query.get_or_404({{ model_name|snake_case }}_id)
return jsonify({
'success': True,
'data': {{ model_name|snake_case }}.to_dict()
}), 200
except Exception as e:
return jsonify({
'success': False,
'error': str(e)
}), 500
@app.route('/api/{{ model_name|pluralize }}', methods=['POST'])
def create_{{ model_name }}():
"""创建新{{ model_name }}"""
try:
data = request.get_json()
new_{{ model_name|snake_case }} = {{ model_name }}(**data)
db.session.add(new_{{ model_name|snake_case }})
db.session.commit()
return jsonify({
'success': True,
'message': '{{ model_name }}创建成功',
'data': new_{{ model_name|snake_case }}.to_dict()
}), 201
except Exception as e:
db.session.rollback()
return jsonify({
'success': False,
'error': str(e)
}), 500
if __name__ == '__main__':
with app.app_context():
db.create_all()
app.run(debug=True)
{# 数据库模型模板 #}
{# templates/sqlalchemy/model.jinja2 #}
from sqlalchemy import Column, Integer, String, DateTime, Boolean, Text, Float, ForeignKey
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy.orm import relationship
from sqlalchemy.sql import func
from datetime import datetime
Base = declarative_base()
class {{ class_name }}(Base):
"""{{ description }}"""
__tablename__ = '{{ table_name }}'
# 主键字段
id = Column(Integer, primary_key=True, autoincrement=True)
# 业务字段
{% for field in fields %}
{{ field.name }} = Column({{ field.type }}{% if field.length %}({{ field.length }}){% endif %}{% if field.nullable == false %}, nullable=False{% endif %}{% if field.default %}, default={{ field.default }}{% endif %}{% if field.comment %}, comment='{{ field.comment }}'{% endif %})
{% endfor %}
# 时间字段
created_at = Column(DateTime, default=func.now(), comment='创建时间')
updated_at = Column(DateTime, default=func.now(), onupdate=func.now(), comment='更新时间')
# 关系定义
{% for relation in relations %}
{{ relation.name }} = relationship('{{ relation.target_class }}', back_populates='{{ relation.back_populates }}')
{% endfor %}
def __repr__(self):
return f'<{{ class_name }}(id={self.id})>'
def to_dict(self):
"""转换为字典"""
return {
'id': self.id,
{% for field in fields %}
'{{ field.name }}': self.{{ field.name }},
{% endfor %}
'created_at': self.created_at.isoformat() if self.created_at else None,
'updated_at': self.updated_at.isoformat() if self.updated_at else None
}
@classmethod
def from_dict(cls, data):
"""从字典创建实例"""
# 过滤掉非字段属性
field_names = [field.name for field in cls.__table__.columns]
filtered_data = {k: v for k, v in data.items() if k in field_names}
return cls(**filtered_data)
2.4 模板使用示例
# 使用模板生成Flask应用
def generate_flask_app():
"""生成Flask应用代码"""
template_manager = CodeTemplateManager()
# 定义模型字段
fields = [
{"name": "name", "type": "String", "length": 100, "nullable": False},
{"name": "description", "type": "Text", "nullable": True},
{"name": "price", "type": "Float", "nullable": False},
{"name": "category", "type": "String", "length": 50, "nullable": False}
]
# 渲染模板
context = {
"model_name": "Product",
"fields": fields
}
generated_code = template_manager.render_template("app", "flask", **context)
if generated_code:
# 保存生成的代码
with open("generated_app.py", "w", encoding="utf-8") as f:
f.write(generated_code)
print("Flask应用代码生成成功!")
return generated_code
return None
# 使用模板生成数据库模型
def generate_database_model():
"""生成数据库模型代码"""
template_manager = CodeTemplateManager()
# 定义字段和关系
fields = [
{"name": "username", "type": "String", "length": 80, "nullable": False, "comment": "用户名"},
{"name": "email", "type": "String", "length": 120, "nullable": False, "comment": "邮箱"},
{"name": "password_hash", "type": "String", "length": 255, "nullable": False, "comment": "密码哈希"},
{"name": "is_active", "type": "Boolean", "default": True, "comment": "是否激活"}
]
relations = [
{"name": "orders", "target_class": "Order", "back_populates": "user"}
]
# 渲染模板
context = {
"class_name": "User",
"description": "用户模型",
"table_name": "users",
"fields": fields,
"relations": relations
}
generated_code = template_manager.render_template("model", "sqlalchemy", **context)
if generated_code:
# 保存生成的代码
with open("generated_user_model.py", "w", encoding="utf-8") as f:
f.write(generated_code)
print("用户模型代码生成成功!")
return generated_code
return None
3. 工作流自动化
3.1 自动化工作流概念
- 工作流定义:一系列自动化任务的组合
- 触发器:启动工作流的条件(文件变更、时间、手动等)
- 任务链:按顺序执行的任务序列
- 条件分支:根据条件选择不同的执行路径
3.2 工作流引擎
# 工作流自动化引擎
import asyncio
import logging
from typing import Dict, List, Callable, Any
from datetime import datetime
import json
class WorkflowEngine:
"""工作流自动化引擎"""
def __init__(self):
self.workflows = {}
self.tasks = {}
self.logger = logging.getLogger(__name__)
def register_task(self, task_name: str, task_func: Callable):
"""注册任务函数"""
self.tasks[task_name] = task_func
self.logger.info(f"任务 {task_name} 注册成功")
def create_workflow(self, workflow_id: str, name: str, description: str = ""):
"""创建工作流"""
self.workflows[workflow_id] = {
"id": workflow_id,
"name": name,
"description": description,
"steps": [],
"triggers": [],
"created_at": datetime.now(),
"enabled": True
}
self.logger.info(f"工作流 {workflow_id} 创建成功")
return self.workflows[workflow_id]
def add_workflow_step(self, workflow_id: str, step_name: str, task_name: str,
parameters: Dict = None, conditions: Dict = None):
"""添加工作流步骤"""
if workflow_id not in self.workflows:
raise ValueError(f"工作流 {workflow_id} 不存在")
step = {
"name": step_name,
"task": task_name,
"parameters": parameters or {},
"conditions": conditions or {},
"order": len(self.workflows[workflow_id]["steps"])
}
self.workflows[workflow_id]["steps"].append(step)
self.logger.info(f"步骤 {step_name} 添加到工作流 {workflow_id}")
def add_workflow_trigger(self, workflow_id: str, trigger_type: str,
trigger_config: Dict):
"""添加工作流触发器"""
if workflow_id not in self.workflows:
raise ValueError(f"工作流 {workflow_id} 不存在")
trigger = {
"type": trigger_type,
"config": trigger_config,
"enabled": True
}
self.workflows[workflow_id]["triggers"].append(trigger)
self.logger.info(f"触发器 {trigger_type} 添加到工作流 {workflow_id}")
async def execute_workflow(self, workflow_id: str, context: Dict = None):
"""执行工作流"""
if workflow_id not in self.workflows:
raise ValueError(f"工作流 {workflow_id} 不存在")
workflow = self.workflows[workflow_id]
if not workflow["enabled"]:
self.logger.warning(f"工作流 {workflow_id} 已禁用")
return False
self.logger.info(f"开始执行工作流 {workflow_id}")
context = context or {}
context["workflow_id"] = workflow_id
context["start_time"] = datetime.now()
try:
for step in workflow["steps"]:
# 检查条件
if not self._check_conditions(step["conditions"], context):
self.logger.info(f"步骤 {step['name']} 条件不满足,跳过")
continue
# 执行任务
await self._execute_step(step, context)
except Exception as e:
self.logger.error(f"工作流 {workflow_id} 执行失败: {e}")
return False
self.logger.info(f"工作流 {workflow_id} 执行完成")
return True
def _check_conditions(self, conditions: Dict, context: Dict) -> bool:
"""检查步骤执行条件"""
for key, value in conditions.items():
if key not in context or context[key] != value:
return False
return True
async def _execute_step(self, step: Dict, context: Dict):
"""执行单个步骤"""
task_name = step["task"]
if task_name not in self.tasks:
raise ValueError(f"任务 {task_name} 未注册")
self.logger.info(f"执行步骤 {step['name']}: {task_name}")
try:
task_func = self.tasks[task_name]
parameters = step["parameters"]
# 支持同步和异步任务
if asyncio.iscoroutinefunction(task_func):
result = await task_func(**parameters, context=context)
else:
result = task_func(**parameters, context=context)
context[f"step_{step['name']}_result"] = result
self.logger.info(f"步骤 {step['name']} 执行成功")
except Exception as e:
self.logger.error(f"步骤 {step['name']} 执行失败: {e}")
raise
3.3 常用自动化任务
# 常用自动化任务定义
import subprocess
import os
from typing import Dict, Any
class AutomationTasks:
"""自动化任务集合"""
@staticmethod
def run_tests(context: Dict = None) -> Dict[str, Any]:
"""运行测试任务"""
try:
result = subprocess.run(
["python", "-m", "pytest", "--cov=.", "--cov-report=html"],
capture_output=True,
text=True,
cwd=context.get("project_path", ".")
)
return {
"success": result.returncode == 0,
"output": result.stdout,
"error": result.stderr,
"return_code": result.returncode
}
except Exception as e:
return {
"success": False,
"error": str(e),
"return_code": -1
}
@staticmethod
def check_code_style(context: Dict = None) -> Dict[str, Any]:
"""检查代码风格任务"""
try:
result = subprocess.run(
["flake8", "."],
capture_output=True,
text=True,
cwd=context.get("project_path", ".")
)
return {
"success": result.returncode == 0,
"output": result.stdout,
"error": result.stderr,
"return_code": result.returncode,
"issues_count": len(result.stdout.splitlines()) if result.stdout else 0
}
except Exception as e:
return {
"success": False,
"error": str(e),
"return_code": -1
}
@staticmethod
def build_project(context: Dict = None) -> Dict[str, Any]:
"""构建项目任务"""
try:
# 清理构建目录
build_dir = context.get("build_dir", "build")
if os.path.exists(build_dir):
import shutil
shutil.rmtree(build_dir)
# 运行构建命令
build_command = context.get("build_command", ["python", "setup.py", "build"])
result = subprocess.run(
build_command,
capture_output=True,
text=True,
cwd=context.get("project_path", ".")
)
return {
"success": result.returncode == 0,
"output": result.stdout,
"error": result.stderr,
"return_code": result.returncode,
"build_dir": build_dir
}
except Exception as e:
return {
"success": False,
"error": str(e),
"return_code": -1
}
@staticmethod
def deploy_project(context: Dict = None) -> Dict[str, Any]:
"""部署项目任务"""
try:
deploy_script = context.get("deploy_script", "deploy.sh")
deploy_env = context.get("deploy_env", "production")
# 设置环境变量
env = os.environ.copy()
env["DEPLOY_ENV"] = deploy_env
result = subprocess.run(
[f"./{deploy_script}"],
capture_output=True,
text=True,
cwd=context.get("project_path", "."),
env=env
)
return {
"success": result.returncode == 0,
"output": result.stdout,
"error": result.stderr,
"return_code": result.returncode,
"deploy_env": deploy_env
}
except Exception as e:
return {
"success": False,
"error": str(e),
"return_code": -1
}
3.4 工作流配置示例
# 配置自动化工作流
def setup_development_workflow():
"""设置开发工作流"""
engine = WorkflowEngine()
# 注册任务
engine.register_task("run_tests", AutomationTasks.run_tests)
engine.register_task("check_code_style", AutomationTasks.check_code_style)
engine.register_task("build_project", AutomationTasks.build_project)
engine.register_task("deploy_project", AutomationTasks.deploy_project)
# 创建代码质量检查工作流
quality_workflow = engine.create_workflow(
"code_quality_check",
"代码质量检查",
"自动检查代码质量和运行测试"
)
# 添加工作流步骤
engine.add_workflow_step(
"code_quality_check",
"style_check",
"check_code_style",
{"project_path": "."}
)
engine.add_workflow_step(
"code_quality_check",
"run_tests",
"run_tests",
{"project_path": "."},
{"step_style_check_result.success": True} # 只有代码风格检查通过才运行测试
)
# 添加文件变更触发器
engine.add_workflow_trigger(
"code_quality_check",
"file_change",
{
"watch_paths": ["./src", "./tests"],
"file_extensions": [".py", ".js", ".ts"],
"debounce_time": 5 # 5秒防抖
}
)
# 创建部署工作流
deploy_workflow = engine.create_workflow(
"auto_deploy",
"自动部署",
"代码合并到主分支后自动部署"
)
# 添加部署步骤
engine.add_workflow_step(
"auto_deploy",
"build",
"build_project",
{"project_path": ".", "build_dir": "dist"}
)
engine.add_workflow_step(
"auto_deploy",
"deploy",
"deploy_project",
{"project_path": ".", "deploy_env": "staging"},
{"step_build_result.success": True} # 只有构建成功才部署
)
# 添加Git推送触发器
engine.add_workflow_trigger(
"auto_deploy",
"git_push",
{
"branch": "main",
"auto_merge": True
}
)
return engine
# 使用工作流
async def main():
"""主函数"""
engine = setup_development_workflow()
# 手动触发代码质量检查
await engine.execute_workflow("code_quality_check", {
"project_path": ".",
"trigger_type": "manual"
})
# 手动触发部署
await engine.execute_workflow("auto_deploy", {
"project_path": ".",
"deploy_env": "production"
})
if __name__ == "__main__":
asyncio.run(main())
高级技巧
1. 提示词优化
- A/B测试:对比不同提示词的效果
- 迭代优化:根据反馈不断改进提示词
- 上下文增强:添加更多上下文信息
- 多轮对话:使用多轮对话提升效果
2. 模板系统扩展
- 模板继承:支持模板间的继承关系
- 条件渲染:根据条件动态渲染内容
- 宏定义:定义可复用的代码片段
- 模板验证:验证模板的正确性
3. 工作流监控
- 执行日志:记录工作流执行过程
- 性能监控:监控任务执行时间
- 错误处理:优雅处理执行错误
- 状态管理:管理工作流执行状态
提示词效果不理想的解决方案
当你发现AI生成的代码或内容不符合预期时,可以尝试以下方法优化提示词效果:
- 优化提示词结构
- 明确描述任务目标,避免歧义。
- 拆分复杂需求为多个简单指令,逐步引导AI。
- 增加上下文信息
- 提供更多背景说明、输入输出示例或相关约束条件。
- 指定代码风格、技术栈或业务场景。
- 添加示例和约束
- 给出期望的输入输出示例,帮助AI理解需求。
- 明确列出必须遵守的规则或限制。
- 采用迭代优化
- 根据AI生成结果不断调整和细化提示词。
- 记录有效的提示词模板,积累经验。
- A/B测试不同提示词
- 同时尝试多种表达方式,比较生成效果,选择最佳方案。
- 利用多轮对话
- 通过多轮交互补充细节,逐步完善生成内容。
- 参考社区和官方文档
- 借鉴优秀的提示词案例,学习行业最佳实践。
小贴士:遇到复杂需求时,可以先让AI分步生成,再手动整合结果,提升整体质量。
下节课预告
下一节课将学习Cursor AI的实战应用,通过实际项目开发演示,让你真正掌握AI辅助编程的技能。
更多推荐
所有评论(0)