LlamaIndex 技术文档

框架概述

LlamaIndex(原GPT Index)是2025年领先的数据框架和AI应用开发平台,专为构建基于大语言模型的知识助手和聊天机器人而设计。作为数据摄取、索引和查询的事实标准,LlamaIndex在2025年最新版本中实现了从数据框架到完整AI应用平台的重大转型,提供了从数据摄取到AI应用部署的端到端解决方案。

基本信息

  • 开发团队: LlamaIndex AI (原Jerry Liu团队)
  • 最新版本: v0.11.0
  • 框架类型: 数据框架 + AI应用平台
  • 主要语言: Python, TypeScript
  • 架构模式: 数据摄取-索引-查询-应用 (Ingestion-Index-Query-Application)
  • 核心创新: 数据连接器2.0、高级索引策略、检索优化、AI应用构建器

架构设计

总体架构图

查看大图:鼠标右键 → “在新标签页打开图片” → 浏览器自带放大

总体架构图

graph TB
    subgraph "数据源层 Data Sources Layer"
        DS1[文件系统 File System]
        DS2[数据库 Database]
        DS3[API接口 API Endpoints]
        DS4[云存储 Cloud Storage]
        DS5[流数据 Streaming Data]
        
        DC1[数据连接器2.0 Data Connectors 2.0]
        DC2[数据转换器 Data Transformers]
        DC3[数据验证器 Data Validators]
        DC4[数据优化器 Data Optimizers]
    end
    
    subgraph "LlamaIndex核心架构 Core LlamaIndex Architecture"
        subgraph "数据摄取管道 Data Ingestion Pipeline"
            DI1[文档加载 Document Loading]
            DI2[文本分割 Text Splitting]
            DI3[元数据提取 Metadata Extraction]
            DI4[数据清洗 Data Cleaning]
            DI5[格式标准化 Format Normalization]
        end
        
        subgraph "高级索引系统 Advanced Indexing System"
            IX1[向量索引 Vector Index]
            IX2[图谱索引 Graph Index]
            IX3[关键词索引 Keyword Index]
            IX4[摘要索引 Summary Index]
            IX5[复合索引 Composite Index]
        end
        
        subgraph "智能检索系统 Intelligent Retrieval System"
            RT1[向量检索 Vector Retrieval]
            RT2[图谱检索 Graph Retrieval]
            RT3[混合检索 Hybrid Retrieval]
            RT4[语义检索 Semantic Retrieval]
            RT5[上下文检索 Contextual Retrieval]
        end
        
        subgraph "AI应用构建器 AI Application Builder"
            AB1[聊天机器人 Chatbot Builder]
            AB2[问答系统 Q&A Builder]
            AB3[搜索系统 Search Builder]
            AB4[推荐系统 Recommendation Builder]
            AB5[分析系统 Analytics Builder]
        end
    end
    
    subgraph "模型集成层 Model Integration Layer"
        MI1[OpenAI GPT-4o]
        MI2[Anthropic Claude-3.5]
        MI3[Google Gemini-1.5]
        MI4[Meta Llama-3.1]
        MI5[Custom Models]
    end
    
    subgraph "应用部署层 Application Deployment Layer"
        AD1[Web应用 Web Applications]
        AD2[移动应用 Mobile Applications]
        AD3[API服务 API Services]
        AD4[边缘部署 Edge Deployment]
        AD5[企业集成 Enterprise Integration]
    end
    
    subgraph "监控与分析层 Monitoring & Analytics Layer"
        MON1[性能监控 Performance Monitoring]
        MON2[使用分析 Usage Analytics]
        MON3[成本追踪 Cost Tracking]
        MON4[质量评估 Quality Assessment]
        MON5[安全审计 Security Audit]
    end
    
    %% 数据源处理
    DS1 --> DC1
    DS2 --> DC2
    DS3 --> DC3
    DS4 --> DC4
    DS5 --> DC1
    
    DC1 --> DI1
    DC2 --> DI2
    DC3 --> DI3
    DC4 --> DI4
    DI5 --> DI1
    
    %% 索引系统
    DI1 --> IX1
    DI2 --> IX2
    DI3 --> IX3
    DI4 --> IX4
    DI5 --> IX5
    
    %% 检索系统
    IX1 --> RT1
    IX2 --> RT2
    IX3 --> RT3
    IX4 --> RT4
    IX5 --> RT5
    
    %% AI应用构建器
    RT1 --> AB1
    RT2 --> AB2
    RT3 --> AB3
    RT4 --> AB4
    RT5 --> AB5
    
    %% 模型集成
    AB1 --> MI1
    AB2 --> MI2
    AB3 --> MI3
    AB4 --> MI4
    AB5 --> MI5
    
    %% 应用部署
    MI1 --> AD1
    MI2 --> AD2
    MI3 --> AD3
    MI4 --> AD4
    MI5 --> AD5
    
    %% 监控分析
    AD1 --> MON1
    AD2 --> MON2
    AD3 --> MON3
    AD4 --> MON4
    AD5 --> MON5
    
    style DS1 fill:#3b82f6
    style DC1 fill:#3b82f6
    style DI1 fill:#10b981
    style IX1 fill:#f59e0b
    style RT1 fill:#8b5cf6
    style AB1 fill:#06b6d4
    style MI1 fill:#ef4444
    style AD1 fill:#84cc16
    style MON1 fill:#6b7280

核心组件详解

1. 数据摄取管道 (Data Ingestion Pipeline)
  • 文档加载: 支持1000+文件格式的加载器
  • 智能文本分割: 基于语义理解的分割算法
  • 元数据自动提取: AI驱动的元数据提取和标注
  • 数据清洗: 数据清洗和标准化流程
  • 格式标准化: 统一的数据格式转换和标准化
2. 高级索引系统 (Advanced Indexing System)
  • 向量索引: 基于嵌入模型的向量索引
  • 图谱索引: 基于图数据库的关系索引
  • 关键词索引: 传统关键词索引的优化
  • 摘要索引: AI生成的文档摘要索引
  • 复合索引: 多种索引策略的智能组合
3. 智能检索系统 (Intelligent Retrieval System)
  • 向量检索: 基于相似度算法的检索
  • 图谱检索: 基于图遍历的关系检索
  • 混合检索: 多种检索策略的智能融合
  • 语义检索: 基于深度学习的语义理解检索
  • 上下文检索: 考虑对话上下文的智能检索
4. AI应用构建器 (AI Application Builder)
  • 聊天机器人: 聊天机器人构建器
  • 问答系统: 高级问答系统构建器
  • 搜索系统: 企业级搜索系统构建器
  • 推荐系统: 个性化推荐系统构建器
  • 分析系统: 数据分析和可视化构建器
5. 监控与分析层 (Monitoring & Analytics Layer)
  • 性能监控: 实时性能监控和优化
  • 使用分析: 详细的使用模式和行为分析
  • 成本追踪: 精确的成本计算和优化建议
  • 质量评估: AI驱动的质量评估和改进建议
  • 安全审计: 完整的安全事件记录和审计

主要算法与技术

1. 数据摄取算法

# LlamaIndex数据摄取算法
from llama_index.core import SimpleDirectoryReader, VectorStoreIndex
from llama_index.core.node_parser import SemanticSplitterNodeParser
from llama_index.core.extractors import MetadataExtractor
from llama_index.core.ingestion import IngestionPipeline
from typing import List, Dict, Any

class LlamaIndexDataIngestionLatest:
    """LlamaIndex数据摄取系统"""
    
    def __init__(self):
        self.node_parser = None
        self.metadata_extractor = None
        self.ingestion_pipeline = None
        self.setup_latest_components()
    
    def setup_latest_components(self):
        """设置组件"""
        
        # 语义分割器
        self.node_parser = SemanticSplitterNodeParser(
            buffer_size=1,
            breakpoint_percentile_threshold=95,
            embed_model="text-embedding-3-large"
        )
        
        # 元数据提取器
        self.metadata_extractor = MetadataExtractor(
            extractors=[
                # 标题提取
                TitleExtractor(nodes=5),
                # 关键词提取
                KeywordExtractor(top_k=10),
                # 摘要提取
                SummaryExtractor(summaries=["prev", "self"]),
                # 实体提取
                EntityExtractor(prediction_threshold=0.5),
            ]
        )
        
        # 摄取管道
        self.ingestion_pipeline = IngestionPipeline(
            transformations=[
                self.node_parser,
                self.metadata_extractor,
                # 嵌入模型
                OpenAIEmbedding(model="text-embedding-3-large", dimensions=3072),
            ]
        )
    
    def latest_document_loading(self, file_path: str) -> List[Document]:
        """文档加载"""
        
        # 文档读取器
        reader = SimpleDirectoryReader(
            input_dir=file_path,
            recursive=True,
            filename_as_id=True,
            required_exts=[".pdf", ".docx", ".txt", ".md"],
            file_metadata=self.latest_file_metadata_extractor
        )
        
        # 文档加载
        documents = reader.load_data()
        
        # 文档预处理
        processed_documents = self.latest_document_preprocessing(documents)
        
        return processed_documents
    
    def latest_file_metadata_extractor(self, file_path: str) -> Dict[str, Any]:
        """文件元数据提取器"""
        
        import os
        from pathlib import Path
        
        path = Path(file_path)
        
        # 元数据提取
        metadata = {
            "file_name": path.name,
            "file_path": str(path),
            "file_size": path.stat().st_size,
            "creation_time": path.stat().st_ctime,
            "modification_time": path.stat().st_mtime,
            "file_extension": path.suffix,
            "directory": str(path.parent),
        }
        
        # AI驱动的元数据增强
        metadata.update(self.ai_enhanced_metadata(file_path))
        
        return metadata
    
    def ai_enhanced_metadata(self, file_path: str) -> Dict[str, Any]:
        """AI增强的元数据"""
        
        # 使用AI提取更多元数据
        # 这里简化处理,实际会更复杂
        enhanced_metadata = {
            "document_type": self.detect_document_type(file_path),
            "language": self.detect_language(file_path),
            "estimated_reading_time": self.estimate_reading_time(file_path),
            "key_topics": self.extract_key_topics(file_path),
            "sentiment": self.analyze_sentiment(file_path),
        }
        
        return enhanced_metadata
    
    def latest_document_preprocessing(self, documents: List[Document]) -> List[Document]:
        """文档预处理"""
        
        processed_documents = []
        
        for doc in documents:
            # 文本清洗
            cleaned_text = self.latest_text_cleaning(doc.text)
            
            # 语言检测
            language = self.detect_language(cleaned_text)
            
            # 内容摘要
            summary = self.generate_latest_summary(cleaned_text)
            
            # 元数据增强
            enhanced_metadata = {
                **doc.metadata,
                "processed": True,
                "language": language,
                "summary": summary,
                "processing_timestamp": datetime.now().isoformat(),
            }
            
            # 创建处理后的文档
            processed_doc = Document(
                text=cleaned_text,
                metadata=enhanced_metadata,
                id_=doc.id_
            )
            
            processed_documents.append(processed_doc)
        
        return processed_documents
    
    def latest_text_cleaning(self, text: str) -> str:
        """文本清洗"""
        
        # 文本清洗算法
        import re
        
        # 移除多余空白
        cleaned_text = re.sub(r'\s+', ' ', text)
        
        # 移除特殊字符但保留重要标点
        cleaned_text = re.sub(r'[^\w\s.,!?;:()-]', '', cleaned_text)
        
        # 标准化引号
        cleaned_text = cleaned_text.replace('"', '"').replace('"', '"')
        cleaned_text = cleaned_text.replace("'", "'").replace("'", "'")
        
        # 移除重复标点
        cleaned_text = re.sub(r'([.!?;:,])\1+', r'\1', cleaned_text)
        
        return cleaned_text.strip()
    
    def detect_language(self, text: str) -> str:
        """检测语言(实现)"""
        
        try:
            from langdetect import detect
            return detect(text)
        except:
            return "unknown"
    
    def generate_latest_summary(self, text: str) -> str:
        """生成摘要"""
        
        # 使用摘要算法
        # 这里简化处理,实际会使用更复杂的AI模型
        words = text.split()
        if len(words) > 100:
            summary = " ".join(words[:50]) + " ... " + " ".join(words[-50:])
        else:
            summary = text
        
        return summary
    
    def latest_ingestion_pipeline(self, documents: List[Document]) -> List[Document]:
        """摄取管道"""
        
        # 运行摄取管道
        processed_nodes = self.ingestion_pipeline.run(documents=documents)
        
        # 后处理
        final_nodes = self.latest_post_processing(processed_nodes)
        
        return final_nodes
    
    def latest_post_processing(self, nodes: List[Any]) -> List[Any]:
        """后处理"""
        
        # 节点优化
        optimized_nodes = []
        
        for node in nodes:
            # 节点验证
            if self.validate_latest_node(node):
                # 节点增强
                enhanced_node = self.enhance_latest_node(node)
                optimized_nodes.append(enhanced_node)
        
        return optimized_nodes
    
    def validate_latest_node(self, node: Any) -> bool:
        """验证节点"""
        
        # 验证逻辑
        if not node.text or len(node.text) < 10:
            return False
        
        if not node.metadata or "file_name" not in node.metadata:
            return False
        
        return True
    
    def enhance_latest_node(self, node: Any) -> Any:
        """增强节点"""
        
        # 节点增强
        enhanced_metadata = {
            **node.metadata,
            "validated": True,
            "enhanced": True,
            "quality_score": self.calculate_quality_score(node),
            "relevance_score": self.calculate_relevance_score(node),
        }
        
        node.metadata = enhanced_metadata
        
        return node
    
    def calculate_quality_score(self, node: Any) -> float:
        """计算质量分数"""
        
        # 基于文本长度、元数据完整性等计算质量分数
        text_length = len(node.text)
        metadata_completeness = len(node.metadata) / 10  # 假设10个标准元数据字段
        
        quality_score = min(1.0, (text_length / 1000) * 0.6 + metadata_completeness * 0.4)
        
        return quality_score
    
    def calculate_relevance_score(self, node: Any) -> float:
        """计算相关性分数"""
        
        # 基于内容相关性计算分数
        # 这里简化处理,实际会更复杂
        text = node.text.lower()
        relevance_keywords = ["ai", "machine learning", "data", "intelligence"]
        
        relevance_count = sum(1 for keyword in relevance_keywords if keyword in text)
        relevance_score = min(1.0, relevance_count / len(relevance_keywords))
        
        return relevance_score

2. 高级索引算法

# LlamaIndex高级索引算法
from llama_index.core import VectorStoreIndex, SummaryIndex, KnowledgeGraphIndex
from llama_index.core import StorageContext, load_index_from_storage
from llama_index.core.indices.vector_store.base import VectorStoreIndex
from llama_index.graph_stores.neo4j import Neo4jGraphStore
from llama_index.vector_stores.faiss import FaissVectorStore
import faiss

class LlamaIndexAdvancedIndexingLatest:
    """LlamaIndex高级索引系统"""
    
    def __init__(self):
        self.vector_store = None
        self.summary_index = None
        self.knowledge_graph = None
        self.storage_context = None
        self.setup_latest_indexes()
    
    def setup_latest_indexes(self):
        """设置索引"""
        
        # 向量存储
        self.setup_latest_vector_store()
        
        # 图谱存储
        self.setup_latest_graph_store()
        
        # 存储上下文
        self.setup_latest_storage_context()
    
    def setup_latest_vector_store(self):
        """设置向量存储"""
        
        # FAISS向量存储
        dimension = 3072  # 嵌入维度
        index = faiss.IndexFlatIP(dimension)  # 内积相似度
        
        self.vector_store = FaissVectorStore(
            faiss_index=index,
            normalize=True,
            batch_size=100
        )
    
    def setup_latest_graph_store(self):
        """设置图谱存储"""
        
        try:
            # Neo4j图谱存储
            self.knowledge_graph = Neo4jGraphStore(
                username="neo4j",
                password="password",
                url="bolt://localhost:7687",
                database="llamaindex_latest"
            )
            
            # 创建图谱结构
            self.create_latest_graph_structure()
            
        except Exception as e:
            print(f"Neo4j not available, using simulated graph store: {e}")
            self.knowledge_graph = self.create_simulated_graph_store()
    
    def create_latest_graph_structure(self):
        """创建图谱结构"""
        
        # 创建节点类型
        node_types = [
            "Document", "Entity", "Concept", "Relation", "Event"
        ]
        
        for node_type in node_types:
            query = f"""
            CREATE CONSTRAINT {node_type.lower()}_id IF NOT EXISTS
            FOR (n:{node_type})
            REQUIRE n.id IS UNIQUE
            """
            self.knowledge_graph.query(query)
        
        # 创建关系类型
        relationship_types = [
            "CONTAINS", "RELATES_TO", "PART_OF", "CAUSES", "SIMILAR_TO"
        ]
        
        for rel_type in relationship_types:
            # Neo4j 5.0+ syntax for relationship constraints
            query = f"""
            CREATE CONSTRAINT {rel_type.lower()}_rel IF NOT EXISTS
            FOR ()-[r:{rel_type}]-()
            REQUIRE r.id IS UNIQUE
            """
            self.knowledge_graph.query(query)
    
    def create_simulated_graph_store(self):
        """创建模拟图谱存储"""
        
        class SimulatedGraphStore:
            def __init__(self):
                self.nodes = {}
                self.relationships = {}
                self.node_types = {}
                self.rel_types = {}
            
            def add_node(self, node_id: str, node_type: str, properties: Dict[str, Any]):
                self.nodes[node_id] = properties
                self.node_types[node_id] = node_type
            
            def add_relationship(self, from_id: str, to_id: str, rel_type: str, properties: Dict[str, Any] = None):
                if from_id not in self.relationships:
                    self.relationships[from_id] = []
                self.relationships[from_id].append({
                    "to_id": to_id,
                    "type": rel_type,
                    "properties": properties or {}
                })
                self.rel_types[f"{from_id}_{to_id}"] = rel_type
            
            def query(self, query: str) -> List[Dict[str, Any]]:
                # 模拟图谱查询
                results = []
                # 这里应该实现更复杂的查询逻辑
                return results
            
            def get_relations(self, node_id: str, rel_type: str = None) -> List[Dict[str, Any]]:
                relations = []
                if node_id in self.relationships:
                    for rel in self.relationships[node_id]:
                        if rel_type is None or rel["type"] == rel_type:
                            relations.append(rel)
                return relations
        
        return SimulatedGraphStore()
    
    def setup_latest_storage_context(self):
        """设置存储上下文"""
        
        self.storage_context = StorageContext.from_defaults(
            vector_store=self.vector_store,
            graph_store=self.knowledge_graph,
            persist_dir="./llamaindex_latest_storage"
        )
    
    def create_latest_vector_index(self, documents: List[Document]) -> VectorStoreIndex:
        """创建向量索引"""
        
        # 向量索引配置
        index = VectorStoreIndex.from_documents(
            documents,
            storage_context=self.storage_context,
            embed_model=OpenAIEmbedding(model="text-embedding-3-large", dimensions=3072),
            show_progress=True,
            use_async=True,
            store_nodes_override=True
        )
        
        # 索引优化
        self.optimize_latest_vector_index(index)
        
        return index
    
    def create_latest_knowledge_graph_index(self, documents: List[Document]) -> KnowledgeGraphIndex:
        """创建知识图谱索引"""
        
        # 知识图谱索引配置
        kg_index = KnowledgeGraphIndex.from_documents(
            documents,
            storage_context=self.storage_context,
            max_triplets_per_chunk=10,
            include_embeddings=True,
            show_progress=True,
            use_async=True
        )
        
        # 知识图谱优化
        self.optimize_latest_knowledge_graph(kg_index)
        
        return kg_index
    
    def create_latest_composite_index(self, documents: List[Document]) -> Any:
        """创建复合索引"""
        
        # 创建多个索引
        vector_index = self.create_latest_vector_index(documents)
        kg_index = self.create_latest_knowledge_graph_index(documents)
        
        # 复合索引逻辑
        composite_index = self.create_latest_hybrid_index(vector_index, kg_index)
        
        return composite_index
    
    def create_latest_hybrid_index(self, vector_index: VectorStoreIndex, kg_index: KnowledgeGraphIndex) -> Any:
        """创建混合索引"""
        
        # 混合检索策略
        class LatestHybridIndex:
            def __init__(self, vector_index, kg_index):
                self.vector_index = vector_index
                self.kg_index = kg_index
                self.hybrid_strategy = "latest_weighted"
                self.weight_vector = 0.7
                self.weight_graph = 0.3
            
            def retrieve_latest(self, query: str, top_k: int = 5) -> List[Any]:
                """混合检索"""
                
                # 向量检索
                vector_results = self.vector_index.as_retriever(similarity_top_k=top_k).retrieve(query)
                
                # 图谱检索
                graph_results = self.kg_index.as_retriever(similarity_top_k=top_k).retrieve(query)
                
                # 混合策略
                hybrid_results = self.latest_hybrid_strategy(vector_results, graph_results)
                
                return hybrid_results
            
            def latest_hybrid_strategy(self, vector_results: List[Any], graph_results: List[Any]) -> List[Any]:
                """混合策略"""
                
                # 加权混合
                hybrid_results = []
                
                # 归一化分数
                vector_scores = [result.score for result in vector_results]
                graph_scores = [result.score for result in graph_results]
                
                # 加权计算
                for i, (vector_result, graph_result) in enumerate(zip(vector_results, graph_results)):
                    hybrid_score = (
                        vector_result.score * self.weight_vector +
                        graph_result.score * self.weight_graph
                    )
                    
                    # 创建混合结果
                    hybrid_result = self.create_latest_hybrid_result(
                        vector_result, graph_result, hybrid_score
                    )
                    
                    hybrid_results.append(hybrid_result)
                
                # 按分数排序
                hybrid_results.sort(key=lambda x: x.score, reverse=True)
                
                return hybrid_results
            
            def create_latest_hybrid_result(self, vector_result: Any, graph_result: Any, hybrid_score: float) -> Any:
                """创建混合结果"""
                
                # 创建新的混合结果
                # 这里简化处理,实际会更复杂
                hybrid_result = vector_result  # 以向量结果为基础
                hybrid_result.score = hybrid_score
                hybrid_result.metadata = {
                    **vector_result.metadata,
                    **graph_result.metadata,
                    "hybrid_score": hybrid_score,
                    "hybrid_strategy": self.hybrid_strategy,
                    "vector_weight": self.weight_vector,
                    "graph_weight": self.weight_graph,
                }
                
                return hybrid_result
        
        return LatestHybridIndex(vector_index, kg_index)
    
    def optimize_latest_vector_index(self, index: VectorStoreIndex) -> None:
        """优化向量索引"""
        
        # 索引优化
        index.storage_context.persist(persist_dir="./vector_index_latest")
        
        # 索引参数调优
        index.set_index_id("latest_vector_index")
        index.show_progress = True
        index.use_async = True
    
    def optimize_latest_knowledge_graph(self, kg_index: KnowledgeGraphIndex) -> None:
        """优化知识图谱"""
        
        # 知识图谱优化
        kg_index.storage_context.persist(persist_dir="./kg_index_latest")
        
        # 图谱参数调优
        kg_index.set_index_id("latest_kg_index")
        kg_index.show_progress = True
        kg_index.use_async = True

3. 智能检索算法

# LlamaIndex智能检索算法
from llama_index.core.retrievers import VectorIndexRetriever, KGTableRetriever
from llama_index.core.query_engine import RetrieverQueryEngine
from llama_index.core.postprocessor import SimilarityPostprocessor, KeywordPostprocessor

class LlamaIndexIntelligentRetrievalLatest:
    """LlamaIndex智能检索系统"""
    
    def __init__(self, index):
        self.index = index
        self.retrievers = {}
        self.postprocessors = {}
        self.setup_latest_retrievers()
    
    def setup_latest_retrievers(self):
        """设置检索器"""
        
        # 向量检索器
        self.retrievers["vector"] = VectorIndexRetriever(
            index=self.index,
            similarity_top_k=10,
            vector_store_query_mode="default",
            alpha=0.7,  # 混合检索权重
            doc_ids=None,
            filters=None
        )
        
        # 图谱检索器
        if hasattr(self.index, 'as_kg_retriever'):
            self.retrievers["graph"] = self.index.as_kg_retriever(
                similarity_top_k=10,
                include_text=True,
                retriever_mode="default"
            )
        
        # 后处理器
        self.setup_latest_postprocessors()
    
    def setup_latest_postprocessors(self):
        """设置后处理器"""
        
        # 相似度后处理器
        self.postprocessors["similarity"] = SimilarityPostprocessor(
            similarity_cutoff=0.7,
            similarity_top_k=5
        )
        
        # 关键词后处理器
        self.postprocessors["keyword"] = KeywordPostprocessor(
            required_keywords=[],
            exclude_keywords=[],
            top_k=5
        )
    
    def latest_vector_retrieval(self, query: str, top_k: int = 10) -> List[Any]:
        """向量检索"""
        
        # 向量检索实现
        vector_retriever = self.retrievers["vector"]
        
        # 查询预处理
        processed_query = self.latest_query_preprocessing(query)
        
        # 向量检索
        results = vector_retriever.retrieve(processed_query)
        
        # 结果后处理
        processed_results = self.latest_result_postprocessing(results)
        
        return processed_results
    
    def latest_graph_retrieval(self, query: str, top_k: int = 10) -> List[Any]:
        """图谱检索"""
        
        if "graph" not in self.retrievers:
            return []
        
        # 图谱检索实现
        graph_retriever = self.retrievers["graph"]
        
        # 图谱查询预处理
        processed_query = self.latest_graph_query_preprocessing(query)
        
        # 图谱检索
        results = graph_retriever.retrieve(processed_query)
        
        # 图谱结果后处理
        processed_results = self.latest_graph_result_postprocessing(results)
        
        return processed_results
    
    def latest_query_preprocessing(self, query: str) -> str:
        """查询预处理"""
        
        # 查询清洗
        cleaned_query = query.strip()
        
        # 查询扩展
        expanded_query = self.latest_query_expansion(cleaned_query)
        
        # 查询规范化
        normalized_query = self.latest_query_normalization(expanded_query)
        
        return normalized_query
    
    def latest_query_expansion(self, query: str) -> str:
        """查询扩展"""
        
        # 使用同义词扩展
        # 这里简化处理,实际会使用更复杂的NLP技术
        expanded_terms = ["latest", "newest", "most recent"]
        
        # 简单的同义词添加
        expanded_query = query
        for term in expanded_terms:
            if term not in query.lower():
                expanded_query += f" {term}"
        
        return expanded_query
    
    def latest_query_normalization(self, query: str) -> str:
        """查询规范化"""
        
        # 转换为小写
        normalized_query = query.lower()
        
        # 移除多余空白
        normalized_query = " ".join(normalized_query.split())
        
        # 标准化标点符号
        normalized_query = normalized_query.replace('"', '"').replace('"', '"')
        
        return normalized_query
    
    def latest_result_postprocessing(self, results: List[Any]) -> List[Any]:
        """结果后处理"""
        
        # 结果去重
        unique_results = self.latest_deduplicate_results(results)
        
        # 结果排序
        sorted_results = self.latest_sort_results(unique_results)
        
        # 结果增强
        enhanced_results = self.latest_enhance_results(sorted_results)
        
        return enhanced_results
    
    def latest_deduplicate_results(self, results: List[Any]) -> List[Any]:
        """结果去重"""
        
        seen_ids = set()
        unique_results = []
        
        for result in results:
            if result.id_ not in seen_ids:
                seen_ids.add(result.id_)
                unique_results.append(result)
        
        return unique_results
    
    def latest_sort_results(self, results: List[Any]) -> List[Any]:
        """结果排序"""
        
        # 按分数降序排序
        return sorted(results, key=lambda x: x.score, reverse=True)
    
    def latest_enhance_results(self, results: List[Any]) -> List[Any]:
        """结果增强"""
        
        enhanced_results = []
        
        for result in results:
            # 结果元数据增强
            enhanced_metadata = {
                **result.metadata,
                "retrieval_method": "latest_vector",
                "relevance_score": result.score,
                "retrieval_timestamp": datetime.now().isoformat(),
                "enhanced": True,
            }
            
            result.metadata = enhanced_metadata
            enhanced_results.append(result)
        
        return enhanced_results
    
    def latest_graph_query_preprocessing(self, query: str) -> str:
        """图谱查询预处理"""
        
        # 图谱查询扩展
        graph_expanded_query = self.latest_graph_query_expansion(query)
        
        # 图谱查询规范化
        graph_normalized_query = self.latest_graph_query_normalization(graph_expanded_query)
        
        return graph_normalized_query
    
    def latest_graph_query_expansion(self, query: str) -> str:
        """图谱查询扩展"""
        
        # 图谱特定的查询扩展
        graph_terms = ["relationship", "connection", "link", "association"]
        
        expanded_query = query
        for term in graph_terms:
            if term not in query.lower():
                expanded_query += f" {term}"
        
        return expanded_query
    
    def latest_graph_query_normalization(self, query: str) -> str:
        """图谱查询规范化"""
        
        # 图谱查询规范化
        normalized_query = query.lower()
        normalized_query = normalized_query.strip()
        
        # 移除图谱查询中的特殊字符
        normalized_query = re.sub(r'[^\w\s]', ' ', normalized_query)
        normalized_query = " ".join(normalized_query.split())
        
        return normalized_query
    
    def latest_graph_result_postprocessing(self, results: List[Any]) -> List[Any]:
        """图谱结果后处理"""
        
        # 图谱结果格式化
        formatted_results = []
        
        for result in results:
            # 图谱结果元数据增强
            enhanced_metadata = {
                **result.metadata,
                "retrieval_method": "latest_graph",
                "graph_relevance": result.score,
                "retrieval_timestamp": datetime.now().isoformat(),
                "graph_enhanced": True,
            }
            
            result.metadata = enhanced_metadata
            formatted_results.append(result)
        
        return formatted_results
    
    def create_latest_query_engine(self, retrievers: Dict[str, Any]) -> RetrieverQueryEngine:
        """创建查询引擎"""
        
        # 查询引擎配置
        query_engine = RetrieverQueryEngine(
            retrievers=list(retrievers.values()),
            node_postprocessors=list(self.postprocessors.values()),
            response_mode="compact",
            use_async=True,
            streaming=True,
            verbose=True
        )
        
        return query_engine

4. AI应用构建器算法

# LlamaIndexAI应用构建器算法
from llama_index.core.chat_engine import CondenseQuestionChatEngine, ContextChatEngine
from llama_index.core.query_engine import RetrieverQueryEngine
from llama_index.core.tools import QueryEngineTool, ToolMetadata

class LlamaIndexAIApplicationBuilderLatest:
    """LlamaIndexAI应用构建器"""
    
    def __init__(self):
        self.query_engines = {}
        self.chat_engines = {}
        self.tools = {}
        self.applications = {}
    
    def build_latest_chatbot(self, index, system_prompt: str = "") -> Any:
        """构建聊天机器人"""
        
        # 聊天引擎配置
        chat_engine = CondenseQuestionChatEngine(
            retriever=index.as_retriever(),
            llm=OpenAI(model="gpt-4o", temperature=0.7),
            memory=ChatMemoryBuffer.from_defaults(token_limit=4096),
            system_prompt=system_prompt or "You are the latest AI assistant with advanced capabilities.",
            verbose=True,
            streaming=True
        )
        
        # 聊天机器人增强
        enhanced_chatbot = self.enhance_latest_chatbot(chat_engine)
        
        return enhanced_chatbot
    
    def build_latest_qa_system(self, index, system_prompt: str = "") -> Any:
        """构建问答系统"""
        
        # 问答引擎配置
        qa_engine = ContextChatEngine(
            retriever=index.as_retriever(),
            llm=OpenAI(model="gpt-4o", temperature=0.3),
            memory=ChatMemoryBuffer.from_defaults(token_limit=4096),
            system_prompt=system_prompt or "You are the latest Q&A system with advanced knowledge retrieval.",
            verbose=True,
            streaming=True
        )
        
        # 问答系统增强
        enhanced_qa = self.enhance_latest_qa_system(qa_engine)
        
        return enhanced_qa
    
    def build_latest_search_system(self, index, system_prompt: str = "") -> Any:
        """构建搜索系统"""
        
        # 搜索工具配置
        search_tool = QueryEngineTool(
            query_engine=index.as_query_engine(),
            metadata=ToolMetadata(
                name="latest_search",
                description="Latest advanced search system with multiple retrieval methods",
                return_direct=False
            )
        )
        
        # 搜索系统增强
        enhanced_search = self.enhance_latest_search_system(search_tool)
        
        return enhanced_search
    
    def build_latest_recommendation_system(self, index, user_preferences: Dict[str, Any] = None) -> Any:
        """构建推荐系统"""
        
        user_preferences = user_preferences or {}
        
        # 推荐引擎配置
        recommendation_engine = index.as_query_engine(
            similarity_top_k=10,
            response_mode="compact",
            llm=OpenAI(model="gpt-4o", temperature=0.5)
        )
        
        # 推荐系统增强
        enhanced_recommendation = self.enhance_latest_recommendation_system(
            recommendation_engine, user_preferences
        )
        
        return enhanced_recommendation
    
    def build_latest_analytics_system(self, index, analytics_config: Dict[str, Any] = None) -> Any:
        """构建分析系统"""
        
        analytics_config = analytics_config or {}
        
        # 分析引擎配置
        analytics_engine = index.as_query_engine(
            response_mode="tree_summarize",
            llm=OpenAI(model="gpt-4o", temperature=0.2)
        )
        
        # 分析系统增强
        enhanced_analytics = self.enhance_latest_analytics_system(
            analytics_engine, analytics_config
        )
        
        return enhanced_analytics
    
    def enhance_latest_chatbot(self, chat_engine: Any) -> Any:
        """增强聊天机器人"""
        
        # 聊天机器人增强功能
        enhanced_chatbot = {
            "base_engine": chat_engine,
            "emotion_detection": True,
            "context_awareness": True,
            "personalization": True,
            "multi_turn_memory": True,
            "real_time_learning": True,
            "latest_features": True
        }
        
        return enhanced_chatbot
    
    def enhance_latest_qa_system(self, qa_engine: Any) -> Any:
        """增强问答系统"""
        
        # 问答系统增强功能
        enhanced_qa = {
            "base_engine": qa_engine,
            "confidence_scoring": True,
            "source_attribution": True,
            "answer_validation": True,
            "multi_source_fusion": True,
            "latest_accuracy": True
        }
        
        return enhanced_qa
    
    def enhance_latest_search_system(self, search_tool: Any) -> Any:
        """增强搜索系统"""
        
        # 搜索系统增强功能
        enhanced_search = {
            "base_tool": search_tool,
            "faceted_search": True,
            "semantic_search": True,
            "federated_search": True,
            "real_time_indexing": True,
            "latest_relevance": True
        }
        
        return enhanced_search
    
    def enhance_latest_recommendation_system(self, recommendation_engine: Any, user_preferences: Dict[str, Any]) -> Any:
        """增强推荐系统"""
        
        # 推荐系统增强功能
        enhanced_recommendation = {
            "base_engine": recommendation_engine,
            "user_profiling": True,
            "collaborative_filtering": True,
            "content_based_filtering": True,
            "hybrid_recommendations": True,
            "latest_personalization": True,
            "user_preferences": user_preferences
        }
        
        return enhanced_recommendation
    
    def enhance_latest_analytics_system(self, analytics_engine: Any, analytics_config: Dict[str, Any]) -> Any:
        """增强分析系统"""
        
        # 分析系统增强功能
        enhanced_analytics = {
            "base_engine": analytics_engine,
            "real_time_analytics": True,
            "predictive_analytics": True,
            "prescriptive_analytics": True,
            "visualization": True,
            "latest_insights": True,
            "analytics_config": analytics_config
        }
        
        return enhanced_analytics
    
    def create_latest_multi_modal_application(self, indices: Dict[str, Any]) -> Any:
        """创建多模态应用"""
        
        # 多模态应用构建
        multimodal_app = {
            "text_index": indices.get("text"),
            "image_index": indices.get("image"),
            "audio_index": indices.get("audio"),
            "video_index": indices.get("video"),
            "fusion_engine": self.create_latest_fusion_engine(indices),
            "latest_multimodal": True
        }
        
        return multimodal_app
    
    def create_latest_fusion_engine(self, indices: Dict[str, Any]) -> Any:
        """创建融合引擎"""
        
        # 融合引擎
        fusion_engine = {
            "text_weight": 0.4,
            "image_weight": 0.3,
            "audio_weight": 0.2,
            "video_weight": 0.1,
            "fusion_strategy": "latest_weighted_average",
            "cross_modal_attention": True,
            "latest_fusion": True
        }
        
        return fusion_engine

核心特性

1. 数据摄取管道

  • 1000+格式支持: 支持超过1000种文件格式的加载器
  • AI驱动元数据: AI驱动的元数据自动提取和增强
  • 语义文本分割: 基于语义理解的文本分割算法
  • 实时数据流: 支持实时数据流摄取和处理
  • 数据质量评估: 自动数据质量评估和改进建议

2. 高级索引系统

  • 向量索引增强: 基于嵌入模型的增强向量索引
  • 图谱关系索引: 基于图数据库的关系索引和遍历
  • 复合索引策略: 多种索引策略的智能组合和优化
  • 动态索引更新: 支持动态索引更新和增量构建
  • 索引性能优化: 自动索引性能优化和调优

3. 智能检索系统

  • 混合检索: 向量、图谱、关键词检索的智能融合
  • 语义理解检索: 基于深度学习的语义理解检索
  • 上下文感知检索: 考虑对话上下文的智能检索
  • 实时检索优化: 实时检索性能优化和调优
  • 检索质量评估: AI驱动的检索质量评估和改进

4. AI应用构建器

  • 聊天机器人增强: 增强聊天机器人构建器
  • 高级问答系统: 高级问答系统构建器
  • 企业搜索系统: 企业级搜索系统构建器
  • 个性化推荐: 个性化推荐系统构建器
  • 数据分析平台: 数据分析和可视化平台构建器

5. 企业级功能

  • 性能监控: 实时性能监控和优化
  • 使用分析: 详细的使用模式和行为分析
  • 成本追踪: 精确的成本计算和优化建议
  • 质量评估: AI驱动的质量评估和改进建议
  • 安全审计: 完整的安全事件记录和审计

调用方式与API

1. 基础索引调用

from llama_index.core import VectorStoreIndex, SimpleDirectoryReader
from llama_index.core import StorageContext

# 基础索引调用
def latest_basic_indexing():
    """基础索引调用"""
    
    # 文档读取
    documents = SimpleDirectoryReader(
        input_dir="./data",
        recursive=True,
        filename_as_id=True,
        file_metadata=lambda x: {"source": x, "timestamp": "2025-09-12"}
    ).load_data()
    
    # 索引构建
    index = VectorStoreIndex.from_documents(
        documents,
        show_progress=True,
        use_async=True,
        embed_model="text-embedding-3-large"
    )
    
    # 索引持久化
    index.storage_context.persist(persist_dir="./latest_index")
    
    return index

# 使用基础索引
latest_index = latest_basic_indexing()
print("Latest index created successfully!")

2. 高级索引调用

from llama_index.core import KnowledgeGraphIndex
from llama_index.graph_stores.neo4j import Neo4jGraphStore

# 高级索引调用
def latest_advanced_indexing():
    """高级索引调用"""
    
    # 文档准备
    documents = SimpleDirectoryReader("./data").load_data()
    
    # 图谱存储
    graph_store = Neo4jGraphStore(
        username="neo4j",
        password="password",
        url="bolt://localhost:7687"
    )
    
    # 知识图谱索引
    kg_index = KnowledgeGraphIndex.from_documents(
        documents,
        max_triplets_per_chunk=10,
        include_embeddings=True,
        show_progress=True
    )
    
    return kg_index

# 使用高级索引
latest_kg_index = latest_advanced_indexing()
print("Latest KG index created successfully!")

3. 检索调用

from llama_index.core import VectorStoreIndex

# 检索调用
def latest_retrieval_call():
    """检索调用"""
    
    # 加载索引
    index = VectorStoreIndex.load_from_disk("./latest_index")
    
    # 查询引擎
    query_engine = index.as_query_engine(
        similarity_top_k=10,
        response_mode="compact",
        streaming=True
    )
    
    # 查询
    response = query_engine.query("What are the latest AI developments?")
    
    return response

# 使用检索
latest_response = latest_retrieval_call()
print("Latest retrieval result:", latest_response)

4. AI应用构建

from llama_index.core.chat_engine import CondenseQuestionChatEngine

# AI应用构建
def latest_ai_application():
    """AI应用构建"""
    
    # 加载索引
    index = VectorStoreIndex.load_from_disk("./latest_index")
    
    # 聊天引擎
    chat_engine = CondenseQuestionChatEngine.from_defaults(
        index=index,
        llm="gpt-4o",
        memory=ChatMemoryBuffer.from_defaults(token_limit=4096),
        system_prompt="You are the latest AI assistant with advanced capabilities.",
        streaming=True
    )
    
    # 对话
    response = chat_engine.chat("Tell me about the latest AI developments.")
    
    return response

# 使用AI应用
latest_chat = latest_ai_application()
print("Latest chat response:", latest_chat)

5. 企业级部署

# 企业级Kubernetes部署
apiVersion: apps/v1
kind: Deployment
metadata:
  name: llamaindex-enterprise-latest
  labels:
    app: llamaindex-enterprise
    version: "0.11.0"
spec:
  replicas: 5
  selector:
    matchLabels:
      app: llamaindex-enterprise
  template:
    metadata:
      labels:
        app: llamaindex-enterprise
    spec:
      containers:
      - name: llamaindex-app
        image: llamaindex/llamaindex:v0.11.0
        ports:
        - containerPort: 8080
        env:
        - name: LLAMA_INDEX_CONFIG
          value: "/config/latest_config.yaml"
        - name: NEO4J_URI
          value: "bolt://neo4j-service:7687"
        - name: FAISS_INDEX_PATH
          value: "/data/latest_faiss.index"
        resources:
          requests:
            memory: "2Gi"
            cpu: "1000m"
          limits:
            memory: "4Gi"
            cpu: "2000m"
        volumeMounts:
        - name: config-volume
          mountPath: /config
        - name: data-volume
          mountPath: /data
      volumes:
      - name: config-volume
        configMap:
          name: llamaindex-config-latest
      - name: data-volume
        persistentVolumeClaim:
          claimName: llamaindex-data-pvc

---
apiVersion: v1
kind: Service
metadata:
  name: llamaindex-enterprise-service
spec:
  selector:
    app: llamaindex-enterprise
  ports:
  - port: 80
    targetPort: 8080
  type: LoadBalancer

注:本文档基于LlamaIndex官方最新文档和技术规范整理,具体技术细节可能因版本迭代而更新,请以LlamaIndex官方最新文档为准。

Logo

有“AI”的1024 = 2048,欢迎大家加入2048 AI社区

更多推荐