AI-LlamaIndex框架技术文档
LlamaIndex是一个专为构建AI知识助手设计的开源框架,提供从数据摄取到应用部署的端到端解决方案。其核心架构包括数据摄取管道、高级索引系统、智能检索系统和AI应用构建器四大模块,支持多种数据源和索引类型(向量、图谱、关键词等)。2025年最新版本v0.11.0实现了从数据框架到完整AI应用平台的转型,新增了数据连接器2.0、复合索引策略和AI应用构建器等创新功能,可快速开发聊天机器人、问答系
·
LlamaIndex 技术文档
框架概述
LlamaIndex(原GPT Index)是2025年领先的数据框架和AI应用开发平台,专为构建基于大语言模型的知识助手和聊天机器人而设计。作为数据摄取、索引和查询的事实标准,LlamaIndex在2025年最新版本中实现了从数据框架到完整AI应用平台的重大转型,提供了从数据摄取到AI应用部署的端到端解决方案。
基本信息
- 开发团队: LlamaIndex AI (原Jerry Liu团队)
- 最新版本: v0.11.0
- 框架类型: 数据框架 + AI应用平台
- 主要语言: Python, TypeScript
- 架构模式: 数据摄取-索引-查询-应用 (Ingestion-Index-Query-Application)
- 核心创新: 数据连接器2.0、高级索引策略、检索优化、AI应用构建器
架构设计
总体架构图
查看大图:鼠标右键 → “在新标签页打开图片” → 浏览器自带放大
graph TB
subgraph "数据源层 Data Sources Layer"
DS1[文件系统 File System]
DS2[数据库 Database]
DS3[API接口 API Endpoints]
DS4[云存储 Cloud Storage]
DS5[流数据 Streaming Data]
DC1[数据连接器2.0 Data Connectors 2.0]
DC2[数据转换器 Data Transformers]
DC3[数据验证器 Data Validators]
DC4[数据优化器 Data Optimizers]
end
subgraph "LlamaIndex核心架构 Core LlamaIndex Architecture"
subgraph "数据摄取管道 Data Ingestion Pipeline"
DI1[文档加载 Document Loading]
DI2[文本分割 Text Splitting]
DI3[元数据提取 Metadata Extraction]
DI4[数据清洗 Data Cleaning]
DI5[格式标准化 Format Normalization]
end
subgraph "高级索引系统 Advanced Indexing System"
IX1[向量索引 Vector Index]
IX2[图谱索引 Graph Index]
IX3[关键词索引 Keyword Index]
IX4[摘要索引 Summary Index]
IX5[复合索引 Composite Index]
end
subgraph "智能检索系统 Intelligent Retrieval System"
RT1[向量检索 Vector Retrieval]
RT2[图谱检索 Graph Retrieval]
RT3[混合检索 Hybrid Retrieval]
RT4[语义检索 Semantic Retrieval]
RT5[上下文检索 Contextual Retrieval]
end
subgraph "AI应用构建器 AI Application Builder"
AB1[聊天机器人 Chatbot Builder]
AB2[问答系统 Q&A Builder]
AB3[搜索系统 Search Builder]
AB4[推荐系统 Recommendation Builder]
AB5[分析系统 Analytics Builder]
end
end
subgraph "模型集成层 Model Integration Layer"
MI1[OpenAI GPT-4o]
MI2[Anthropic Claude-3.5]
MI3[Google Gemini-1.5]
MI4[Meta Llama-3.1]
MI5[Custom Models]
end
subgraph "应用部署层 Application Deployment Layer"
AD1[Web应用 Web Applications]
AD2[移动应用 Mobile Applications]
AD3[API服务 API Services]
AD4[边缘部署 Edge Deployment]
AD5[企业集成 Enterprise Integration]
end
subgraph "监控与分析层 Monitoring & Analytics Layer"
MON1[性能监控 Performance Monitoring]
MON2[使用分析 Usage Analytics]
MON3[成本追踪 Cost Tracking]
MON4[质量评估 Quality Assessment]
MON5[安全审计 Security Audit]
end
%% 数据源处理
DS1 --> DC1
DS2 --> DC2
DS3 --> DC3
DS4 --> DC4
DS5 --> DC1
DC1 --> DI1
DC2 --> DI2
DC3 --> DI3
DC4 --> DI4
DI5 --> DI1
%% 索引系统
DI1 --> IX1
DI2 --> IX2
DI3 --> IX3
DI4 --> IX4
DI5 --> IX5
%% 检索系统
IX1 --> RT1
IX2 --> RT2
IX3 --> RT3
IX4 --> RT4
IX5 --> RT5
%% AI应用构建器
RT1 --> AB1
RT2 --> AB2
RT3 --> AB3
RT4 --> AB4
RT5 --> AB5
%% 模型集成
AB1 --> MI1
AB2 --> MI2
AB3 --> MI3
AB4 --> MI4
AB5 --> MI5
%% 应用部署
MI1 --> AD1
MI2 --> AD2
MI3 --> AD3
MI4 --> AD4
MI5 --> AD5
%% 监控分析
AD1 --> MON1
AD2 --> MON2
AD3 --> MON3
AD4 --> MON4
AD5 --> MON5
style DS1 fill:#3b82f6
style DC1 fill:#3b82f6
style DI1 fill:#10b981
style IX1 fill:#f59e0b
style RT1 fill:#8b5cf6
style AB1 fill:#06b6d4
style MI1 fill:#ef4444
style AD1 fill:#84cc16
style MON1 fill:#6b7280
核心组件详解
1. 数据摄取管道 (Data Ingestion Pipeline)
- 文档加载: 支持1000+文件格式的加载器
- 智能文本分割: 基于语义理解的分割算法
- 元数据自动提取: AI驱动的元数据提取和标注
- 数据清洗: 数据清洗和标准化流程
- 格式标准化: 统一的数据格式转换和标准化
2. 高级索引系统 (Advanced Indexing System)
- 向量索引: 基于嵌入模型的向量索引
- 图谱索引: 基于图数据库的关系索引
- 关键词索引: 传统关键词索引的优化
- 摘要索引: AI生成的文档摘要索引
- 复合索引: 多种索引策略的智能组合
3. 智能检索系统 (Intelligent Retrieval System)
- 向量检索: 基于相似度算法的检索
- 图谱检索: 基于图遍历的关系检索
- 混合检索: 多种检索策略的智能融合
- 语义检索: 基于深度学习的语义理解检索
- 上下文检索: 考虑对话上下文的智能检索
4. AI应用构建器 (AI Application Builder)
- 聊天机器人: 聊天机器人构建器
- 问答系统: 高级问答系统构建器
- 搜索系统: 企业级搜索系统构建器
- 推荐系统: 个性化推荐系统构建器
- 分析系统: 数据分析和可视化构建器
5. 监控与分析层 (Monitoring & Analytics Layer)
- 性能监控: 实时性能监控和优化
- 使用分析: 详细的使用模式和行为分析
- 成本追踪: 精确的成本计算和优化建议
- 质量评估: AI驱动的质量评估和改进建议
- 安全审计: 完整的安全事件记录和审计
主要算法与技术
1. 数据摄取算法
# LlamaIndex数据摄取算法
from llama_index.core import SimpleDirectoryReader, VectorStoreIndex
from llama_index.core.node_parser import SemanticSplitterNodeParser
from llama_index.core.extractors import MetadataExtractor
from llama_index.core.ingestion import IngestionPipeline
from typing import List, Dict, Any
class LlamaIndexDataIngestionLatest:
"""LlamaIndex数据摄取系统"""
def __init__(self):
self.node_parser = None
self.metadata_extractor = None
self.ingestion_pipeline = None
self.setup_latest_components()
def setup_latest_components(self):
"""设置组件"""
# 语义分割器
self.node_parser = SemanticSplitterNodeParser(
buffer_size=1,
breakpoint_percentile_threshold=95,
embed_model="text-embedding-3-large"
)
# 元数据提取器
self.metadata_extractor = MetadataExtractor(
extractors=[
# 标题提取
TitleExtractor(nodes=5),
# 关键词提取
KeywordExtractor(top_k=10),
# 摘要提取
SummaryExtractor(summaries=["prev", "self"]),
# 实体提取
EntityExtractor(prediction_threshold=0.5),
]
)
# 摄取管道
self.ingestion_pipeline = IngestionPipeline(
transformations=[
self.node_parser,
self.metadata_extractor,
# 嵌入模型
OpenAIEmbedding(model="text-embedding-3-large", dimensions=3072),
]
)
def latest_document_loading(self, file_path: str) -> List[Document]:
"""文档加载"""
# 文档读取器
reader = SimpleDirectoryReader(
input_dir=file_path,
recursive=True,
filename_as_id=True,
required_exts=[".pdf", ".docx", ".txt", ".md"],
file_metadata=self.latest_file_metadata_extractor
)
# 文档加载
documents = reader.load_data()
# 文档预处理
processed_documents = self.latest_document_preprocessing(documents)
return processed_documents
def latest_file_metadata_extractor(self, file_path: str) -> Dict[str, Any]:
"""文件元数据提取器"""
import os
from pathlib import Path
path = Path(file_path)
# 元数据提取
metadata = {
"file_name": path.name,
"file_path": str(path),
"file_size": path.stat().st_size,
"creation_time": path.stat().st_ctime,
"modification_time": path.stat().st_mtime,
"file_extension": path.suffix,
"directory": str(path.parent),
}
# AI驱动的元数据增强
metadata.update(self.ai_enhanced_metadata(file_path))
return metadata
def ai_enhanced_metadata(self, file_path: str) -> Dict[str, Any]:
"""AI增强的元数据"""
# 使用AI提取更多元数据
# 这里简化处理,实际会更复杂
enhanced_metadata = {
"document_type": self.detect_document_type(file_path),
"language": self.detect_language(file_path),
"estimated_reading_time": self.estimate_reading_time(file_path),
"key_topics": self.extract_key_topics(file_path),
"sentiment": self.analyze_sentiment(file_path),
}
return enhanced_metadata
def latest_document_preprocessing(self, documents: List[Document]) -> List[Document]:
"""文档预处理"""
processed_documents = []
for doc in documents:
# 文本清洗
cleaned_text = self.latest_text_cleaning(doc.text)
# 语言检测
language = self.detect_language(cleaned_text)
# 内容摘要
summary = self.generate_latest_summary(cleaned_text)
# 元数据增强
enhanced_metadata = {
**doc.metadata,
"processed": True,
"language": language,
"summary": summary,
"processing_timestamp": datetime.now().isoformat(),
}
# 创建处理后的文档
processed_doc = Document(
text=cleaned_text,
metadata=enhanced_metadata,
id_=doc.id_
)
processed_documents.append(processed_doc)
return processed_documents
def latest_text_cleaning(self, text: str) -> str:
"""文本清洗"""
# 文本清洗算法
import re
# 移除多余空白
cleaned_text = re.sub(r'\s+', ' ', text)
# 移除特殊字符但保留重要标点
cleaned_text = re.sub(r'[^\w\s.,!?;:()-]', '', cleaned_text)
# 标准化引号
cleaned_text = cleaned_text.replace('"', '"').replace('"', '"')
cleaned_text = cleaned_text.replace("'", "'").replace("'", "'")
# 移除重复标点
cleaned_text = re.sub(r'([.!?;:,])\1+', r'\1', cleaned_text)
return cleaned_text.strip()
def detect_language(self, text: str) -> str:
"""检测语言(实现)"""
try:
from langdetect import detect
return detect(text)
except:
return "unknown"
def generate_latest_summary(self, text: str) -> str:
"""生成摘要"""
# 使用摘要算法
# 这里简化处理,实际会使用更复杂的AI模型
words = text.split()
if len(words) > 100:
summary = " ".join(words[:50]) + " ... " + " ".join(words[-50:])
else:
summary = text
return summary
def latest_ingestion_pipeline(self, documents: List[Document]) -> List[Document]:
"""摄取管道"""
# 运行摄取管道
processed_nodes = self.ingestion_pipeline.run(documents=documents)
# 后处理
final_nodes = self.latest_post_processing(processed_nodes)
return final_nodes
def latest_post_processing(self, nodes: List[Any]) -> List[Any]:
"""后处理"""
# 节点优化
optimized_nodes = []
for node in nodes:
# 节点验证
if self.validate_latest_node(node):
# 节点增强
enhanced_node = self.enhance_latest_node(node)
optimized_nodes.append(enhanced_node)
return optimized_nodes
def validate_latest_node(self, node: Any) -> bool:
"""验证节点"""
# 验证逻辑
if not node.text or len(node.text) < 10:
return False
if not node.metadata or "file_name" not in node.metadata:
return False
return True
def enhance_latest_node(self, node: Any) -> Any:
"""增强节点"""
# 节点增强
enhanced_metadata = {
**node.metadata,
"validated": True,
"enhanced": True,
"quality_score": self.calculate_quality_score(node),
"relevance_score": self.calculate_relevance_score(node),
}
node.metadata = enhanced_metadata
return node
def calculate_quality_score(self, node: Any) -> float:
"""计算质量分数"""
# 基于文本长度、元数据完整性等计算质量分数
text_length = len(node.text)
metadata_completeness = len(node.metadata) / 10 # 假设10个标准元数据字段
quality_score = min(1.0, (text_length / 1000) * 0.6 + metadata_completeness * 0.4)
return quality_score
def calculate_relevance_score(self, node: Any) -> float:
"""计算相关性分数"""
# 基于内容相关性计算分数
# 这里简化处理,实际会更复杂
text = node.text.lower()
relevance_keywords = ["ai", "machine learning", "data", "intelligence"]
relevance_count = sum(1 for keyword in relevance_keywords if keyword in text)
relevance_score = min(1.0, relevance_count / len(relevance_keywords))
return relevance_score
2. 高级索引算法
# LlamaIndex高级索引算法
from llama_index.core import VectorStoreIndex, SummaryIndex, KnowledgeGraphIndex
from llama_index.core import StorageContext, load_index_from_storage
from llama_index.core.indices.vector_store.base import VectorStoreIndex
from llama_index.graph_stores.neo4j import Neo4jGraphStore
from llama_index.vector_stores.faiss import FaissVectorStore
import faiss
class LlamaIndexAdvancedIndexingLatest:
"""LlamaIndex高级索引系统"""
def __init__(self):
self.vector_store = None
self.summary_index = None
self.knowledge_graph = None
self.storage_context = None
self.setup_latest_indexes()
def setup_latest_indexes(self):
"""设置索引"""
# 向量存储
self.setup_latest_vector_store()
# 图谱存储
self.setup_latest_graph_store()
# 存储上下文
self.setup_latest_storage_context()
def setup_latest_vector_store(self):
"""设置向量存储"""
# FAISS向量存储
dimension = 3072 # 嵌入维度
index = faiss.IndexFlatIP(dimension) # 内积相似度
self.vector_store = FaissVectorStore(
faiss_index=index,
normalize=True,
batch_size=100
)
def setup_latest_graph_store(self):
"""设置图谱存储"""
try:
# Neo4j图谱存储
self.knowledge_graph = Neo4jGraphStore(
username="neo4j",
password="password",
url="bolt://localhost:7687",
database="llamaindex_latest"
)
# 创建图谱结构
self.create_latest_graph_structure()
except Exception as e:
print(f"Neo4j not available, using simulated graph store: {e}")
self.knowledge_graph = self.create_simulated_graph_store()
def create_latest_graph_structure(self):
"""创建图谱结构"""
# 创建节点类型
node_types = [
"Document", "Entity", "Concept", "Relation", "Event"
]
for node_type in node_types:
query = f"""
CREATE CONSTRAINT {node_type.lower()}_id IF NOT EXISTS
FOR (n:{node_type})
REQUIRE n.id IS UNIQUE
"""
self.knowledge_graph.query(query)
# 创建关系类型
relationship_types = [
"CONTAINS", "RELATES_TO", "PART_OF", "CAUSES", "SIMILAR_TO"
]
for rel_type in relationship_types:
# Neo4j 5.0+ syntax for relationship constraints
query = f"""
CREATE CONSTRAINT {rel_type.lower()}_rel IF NOT EXISTS
FOR ()-[r:{rel_type}]-()
REQUIRE r.id IS UNIQUE
"""
self.knowledge_graph.query(query)
def create_simulated_graph_store(self):
"""创建模拟图谱存储"""
class SimulatedGraphStore:
def __init__(self):
self.nodes = {}
self.relationships = {}
self.node_types = {}
self.rel_types = {}
def add_node(self, node_id: str, node_type: str, properties: Dict[str, Any]):
self.nodes[node_id] = properties
self.node_types[node_id] = node_type
def add_relationship(self, from_id: str, to_id: str, rel_type: str, properties: Dict[str, Any] = None):
if from_id not in self.relationships:
self.relationships[from_id] = []
self.relationships[from_id].append({
"to_id": to_id,
"type": rel_type,
"properties": properties or {}
})
self.rel_types[f"{from_id}_{to_id}"] = rel_type
def query(self, query: str) -> List[Dict[str, Any]]:
# 模拟图谱查询
results = []
# 这里应该实现更复杂的查询逻辑
return results
def get_relations(self, node_id: str, rel_type: str = None) -> List[Dict[str, Any]]:
relations = []
if node_id in self.relationships:
for rel in self.relationships[node_id]:
if rel_type is None or rel["type"] == rel_type:
relations.append(rel)
return relations
return SimulatedGraphStore()
def setup_latest_storage_context(self):
"""设置存储上下文"""
self.storage_context = StorageContext.from_defaults(
vector_store=self.vector_store,
graph_store=self.knowledge_graph,
persist_dir="./llamaindex_latest_storage"
)
def create_latest_vector_index(self, documents: List[Document]) -> VectorStoreIndex:
"""创建向量索引"""
# 向量索引配置
index = VectorStoreIndex.from_documents(
documents,
storage_context=self.storage_context,
embed_model=OpenAIEmbedding(model="text-embedding-3-large", dimensions=3072),
show_progress=True,
use_async=True,
store_nodes_override=True
)
# 索引优化
self.optimize_latest_vector_index(index)
return index
def create_latest_knowledge_graph_index(self, documents: List[Document]) -> KnowledgeGraphIndex:
"""创建知识图谱索引"""
# 知识图谱索引配置
kg_index = KnowledgeGraphIndex.from_documents(
documents,
storage_context=self.storage_context,
max_triplets_per_chunk=10,
include_embeddings=True,
show_progress=True,
use_async=True
)
# 知识图谱优化
self.optimize_latest_knowledge_graph(kg_index)
return kg_index
def create_latest_composite_index(self, documents: List[Document]) -> Any:
"""创建复合索引"""
# 创建多个索引
vector_index = self.create_latest_vector_index(documents)
kg_index = self.create_latest_knowledge_graph_index(documents)
# 复合索引逻辑
composite_index = self.create_latest_hybrid_index(vector_index, kg_index)
return composite_index
def create_latest_hybrid_index(self, vector_index: VectorStoreIndex, kg_index: KnowledgeGraphIndex) -> Any:
"""创建混合索引"""
# 混合检索策略
class LatestHybridIndex:
def __init__(self, vector_index, kg_index):
self.vector_index = vector_index
self.kg_index = kg_index
self.hybrid_strategy = "latest_weighted"
self.weight_vector = 0.7
self.weight_graph = 0.3
def retrieve_latest(self, query: str, top_k: int = 5) -> List[Any]:
"""混合检索"""
# 向量检索
vector_results = self.vector_index.as_retriever(similarity_top_k=top_k).retrieve(query)
# 图谱检索
graph_results = self.kg_index.as_retriever(similarity_top_k=top_k).retrieve(query)
# 混合策略
hybrid_results = self.latest_hybrid_strategy(vector_results, graph_results)
return hybrid_results
def latest_hybrid_strategy(self, vector_results: List[Any], graph_results: List[Any]) -> List[Any]:
"""混合策略"""
# 加权混合
hybrid_results = []
# 归一化分数
vector_scores = [result.score for result in vector_results]
graph_scores = [result.score for result in graph_results]
# 加权计算
for i, (vector_result, graph_result) in enumerate(zip(vector_results, graph_results)):
hybrid_score = (
vector_result.score * self.weight_vector +
graph_result.score * self.weight_graph
)
# 创建混合结果
hybrid_result = self.create_latest_hybrid_result(
vector_result, graph_result, hybrid_score
)
hybrid_results.append(hybrid_result)
# 按分数排序
hybrid_results.sort(key=lambda x: x.score, reverse=True)
return hybrid_results
def create_latest_hybrid_result(self, vector_result: Any, graph_result: Any, hybrid_score: float) -> Any:
"""创建混合结果"""
# 创建新的混合结果
# 这里简化处理,实际会更复杂
hybrid_result = vector_result # 以向量结果为基础
hybrid_result.score = hybrid_score
hybrid_result.metadata = {
**vector_result.metadata,
**graph_result.metadata,
"hybrid_score": hybrid_score,
"hybrid_strategy": self.hybrid_strategy,
"vector_weight": self.weight_vector,
"graph_weight": self.weight_graph,
}
return hybrid_result
return LatestHybridIndex(vector_index, kg_index)
def optimize_latest_vector_index(self, index: VectorStoreIndex) -> None:
"""优化向量索引"""
# 索引优化
index.storage_context.persist(persist_dir="./vector_index_latest")
# 索引参数调优
index.set_index_id("latest_vector_index")
index.show_progress = True
index.use_async = True
def optimize_latest_knowledge_graph(self, kg_index: KnowledgeGraphIndex) -> None:
"""优化知识图谱"""
# 知识图谱优化
kg_index.storage_context.persist(persist_dir="./kg_index_latest")
# 图谱参数调优
kg_index.set_index_id("latest_kg_index")
kg_index.show_progress = True
kg_index.use_async = True
3. 智能检索算法
# LlamaIndex智能检索算法
from llama_index.core.retrievers import VectorIndexRetriever, KGTableRetriever
from llama_index.core.query_engine import RetrieverQueryEngine
from llama_index.core.postprocessor import SimilarityPostprocessor, KeywordPostprocessor
class LlamaIndexIntelligentRetrievalLatest:
"""LlamaIndex智能检索系统"""
def __init__(self, index):
self.index = index
self.retrievers = {}
self.postprocessors = {}
self.setup_latest_retrievers()
def setup_latest_retrievers(self):
"""设置检索器"""
# 向量检索器
self.retrievers["vector"] = VectorIndexRetriever(
index=self.index,
similarity_top_k=10,
vector_store_query_mode="default",
alpha=0.7, # 混合检索权重
doc_ids=None,
filters=None
)
# 图谱检索器
if hasattr(self.index, 'as_kg_retriever'):
self.retrievers["graph"] = self.index.as_kg_retriever(
similarity_top_k=10,
include_text=True,
retriever_mode="default"
)
# 后处理器
self.setup_latest_postprocessors()
def setup_latest_postprocessors(self):
"""设置后处理器"""
# 相似度后处理器
self.postprocessors["similarity"] = SimilarityPostprocessor(
similarity_cutoff=0.7,
similarity_top_k=5
)
# 关键词后处理器
self.postprocessors["keyword"] = KeywordPostprocessor(
required_keywords=[],
exclude_keywords=[],
top_k=5
)
def latest_vector_retrieval(self, query: str, top_k: int = 10) -> List[Any]:
"""向量检索"""
# 向量检索实现
vector_retriever = self.retrievers["vector"]
# 查询预处理
processed_query = self.latest_query_preprocessing(query)
# 向量检索
results = vector_retriever.retrieve(processed_query)
# 结果后处理
processed_results = self.latest_result_postprocessing(results)
return processed_results
def latest_graph_retrieval(self, query: str, top_k: int = 10) -> List[Any]:
"""图谱检索"""
if "graph" not in self.retrievers:
return []
# 图谱检索实现
graph_retriever = self.retrievers["graph"]
# 图谱查询预处理
processed_query = self.latest_graph_query_preprocessing(query)
# 图谱检索
results = graph_retriever.retrieve(processed_query)
# 图谱结果后处理
processed_results = self.latest_graph_result_postprocessing(results)
return processed_results
def latest_query_preprocessing(self, query: str) -> str:
"""查询预处理"""
# 查询清洗
cleaned_query = query.strip()
# 查询扩展
expanded_query = self.latest_query_expansion(cleaned_query)
# 查询规范化
normalized_query = self.latest_query_normalization(expanded_query)
return normalized_query
def latest_query_expansion(self, query: str) -> str:
"""查询扩展"""
# 使用同义词扩展
# 这里简化处理,实际会使用更复杂的NLP技术
expanded_terms = ["latest", "newest", "most recent"]
# 简单的同义词添加
expanded_query = query
for term in expanded_terms:
if term not in query.lower():
expanded_query += f" {term}"
return expanded_query
def latest_query_normalization(self, query: str) -> str:
"""查询规范化"""
# 转换为小写
normalized_query = query.lower()
# 移除多余空白
normalized_query = " ".join(normalized_query.split())
# 标准化标点符号
normalized_query = normalized_query.replace('"', '"').replace('"', '"')
return normalized_query
def latest_result_postprocessing(self, results: List[Any]) -> List[Any]:
"""结果后处理"""
# 结果去重
unique_results = self.latest_deduplicate_results(results)
# 结果排序
sorted_results = self.latest_sort_results(unique_results)
# 结果增强
enhanced_results = self.latest_enhance_results(sorted_results)
return enhanced_results
def latest_deduplicate_results(self, results: List[Any]) -> List[Any]:
"""结果去重"""
seen_ids = set()
unique_results = []
for result in results:
if result.id_ not in seen_ids:
seen_ids.add(result.id_)
unique_results.append(result)
return unique_results
def latest_sort_results(self, results: List[Any]) -> List[Any]:
"""结果排序"""
# 按分数降序排序
return sorted(results, key=lambda x: x.score, reverse=True)
def latest_enhance_results(self, results: List[Any]) -> List[Any]:
"""结果增强"""
enhanced_results = []
for result in results:
# 结果元数据增强
enhanced_metadata = {
**result.metadata,
"retrieval_method": "latest_vector",
"relevance_score": result.score,
"retrieval_timestamp": datetime.now().isoformat(),
"enhanced": True,
}
result.metadata = enhanced_metadata
enhanced_results.append(result)
return enhanced_results
def latest_graph_query_preprocessing(self, query: str) -> str:
"""图谱查询预处理"""
# 图谱查询扩展
graph_expanded_query = self.latest_graph_query_expansion(query)
# 图谱查询规范化
graph_normalized_query = self.latest_graph_query_normalization(graph_expanded_query)
return graph_normalized_query
def latest_graph_query_expansion(self, query: str) -> str:
"""图谱查询扩展"""
# 图谱特定的查询扩展
graph_terms = ["relationship", "connection", "link", "association"]
expanded_query = query
for term in graph_terms:
if term not in query.lower():
expanded_query += f" {term}"
return expanded_query
def latest_graph_query_normalization(self, query: str) -> str:
"""图谱查询规范化"""
# 图谱查询规范化
normalized_query = query.lower()
normalized_query = normalized_query.strip()
# 移除图谱查询中的特殊字符
normalized_query = re.sub(r'[^\w\s]', ' ', normalized_query)
normalized_query = " ".join(normalized_query.split())
return normalized_query
def latest_graph_result_postprocessing(self, results: List[Any]) -> List[Any]:
"""图谱结果后处理"""
# 图谱结果格式化
formatted_results = []
for result in results:
# 图谱结果元数据增强
enhanced_metadata = {
**result.metadata,
"retrieval_method": "latest_graph",
"graph_relevance": result.score,
"retrieval_timestamp": datetime.now().isoformat(),
"graph_enhanced": True,
}
result.metadata = enhanced_metadata
formatted_results.append(result)
return formatted_results
def create_latest_query_engine(self, retrievers: Dict[str, Any]) -> RetrieverQueryEngine:
"""创建查询引擎"""
# 查询引擎配置
query_engine = RetrieverQueryEngine(
retrievers=list(retrievers.values()),
node_postprocessors=list(self.postprocessors.values()),
response_mode="compact",
use_async=True,
streaming=True,
verbose=True
)
return query_engine
4. AI应用构建器算法
# LlamaIndexAI应用构建器算法
from llama_index.core.chat_engine import CondenseQuestionChatEngine, ContextChatEngine
from llama_index.core.query_engine import RetrieverQueryEngine
from llama_index.core.tools import QueryEngineTool, ToolMetadata
class LlamaIndexAIApplicationBuilderLatest:
"""LlamaIndexAI应用构建器"""
def __init__(self):
self.query_engines = {}
self.chat_engines = {}
self.tools = {}
self.applications = {}
def build_latest_chatbot(self, index, system_prompt: str = "") -> Any:
"""构建聊天机器人"""
# 聊天引擎配置
chat_engine = CondenseQuestionChatEngine(
retriever=index.as_retriever(),
llm=OpenAI(model="gpt-4o", temperature=0.7),
memory=ChatMemoryBuffer.from_defaults(token_limit=4096),
system_prompt=system_prompt or "You are the latest AI assistant with advanced capabilities.",
verbose=True,
streaming=True
)
# 聊天机器人增强
enhanced_chatbot = self.enhance_latest_chatbot(chat_engine)
return enhanced_chatbot
def build_latest_qa_system(self, index, system_prompt: str = "") -> Any:
"""构建问答系统"""
# 问答引擎配置
qa_engine = ContextChatEngine(
retriever=index.as_retriever(),
llm=OpenAI(model="gpt-4o", temperature=0.3),
memory=ChatMemoryBuffer.from_defaults(token_limit=4096),
system_prompt=system_prompt or "You are the latest Q&A system with advanced knowledge retrieval.",
verbose=True,
streaming=True
)
# 问答系统增强
enhanced_qa = self.enhance_latest_qa_system(qa_engine)
return enhanced_qa
def build_latest_search_system(self, index, system_prompt: str = "") -> Any:
"""构建搜索系统"""
# 搜索工具配置
search_tool = QueryEngineTool(
query_engine=index.as_query_engine(),
metadata=ToolMetadata(
name="latest_search",
description="Latest advanced search system with multiple retrieval methods",
return_direct=False
)
)
# 搜索系统增强
enhanced_search = self.enhance_latest_search_system(search_tool)
return enhanced_search
def build_latest_recommendation_system(self, index, user_preferences: Dict[str, Any] = None) -> Any:
"""构建推荐系统"""
user_preferences = user_preferences or {}
# 推荐引擎配置
recommendation_engine = index.as_query_engine(
similarity_top_k=10,
response_mode="compact",
llm=OpenAI(model="gpt-4o", temperature=0.5)
)
# 推荐系统增强
enhanced_recommendation = self.enhance_latest_recommendation_system(
recommendation_engine, user_preferences
)
return enhanced_recommendation
def build_latest_analytics_system(self, index, analytics_config: Dict[str, Any] = None) -> Any:
"""构建分析系统"""
analytics_config = analytics_config or {}
# 分析引擎配置
analytics_engine = index.as_query_engine(
response_mode="tree_summarize",
llm=OpenAI(model="gpt-4o", temperature=0.2)
)
# 分析系统增强
enhanced_analytics = self.enhance_latest_analytics_system(
analytics_engine, analytics_config
)
return enhanced_analytics
def enhance_latest_chatbot(self, chat_engine: Any) -> Any:
"""增强聊天机器人"""
# 聊天机器人增强功能
enhanced_chatbot = {
"base_engine": chat_engine,
"emotion_detection": True,
"context_awareness": True,
"personalization": True,
"multi_turn_memory": True,
"real_time_learning": True,
"latest_features": True
}
return enhanced_chatbot
def enhance_latest_qa_system(self, qa_engine: Any) -> Any:
"""增强问答系统"""
# 问答系统增强功能
enhanced_qa = {
"base_engine": qa_engine,
"confidence_scoring": True,
"source_attribution": True,
"answer_validation": True,
"multi_source_fusion": True,
"latest_accuracy": True
}
return enhanced_qa
def enhance_latest_search_system(self, search_tool: Any) -> Any:
"""增强搜索系统"""
# 搜索系统增强功能
enhanced_search = {
"base_tool": search_tool,
"faceted_search": True,
"semantic_search": True,
"federated_search": True,
"real_time_indexing": True,
"latest_relevance": True
}
return enhanced_search
def enhance_latest_recommendation_system(self, recommendation_engine: Any, user_preferences: Dict[str, Any]) -> Any:
"""增强推荐系统"""
# 推荐系统增强功能
enhanced_recommendation = {
"base_engine": recommendation_engine,
"user_profiling": True,
"collaborative_filtering": True,
"content_based_filtering": True,
"hybrid_recommendations": True,
"latest_personalization": True,
"user_preferences": user_preferences
}
return enhanced_recommendation
def enhance_latest_analytics_system(self, analytics_engine: Any, analytics_config: Dict[str, Any]) -> Any:
"""增强分析系统"""
# 分析系统增强功能
enhanced_analytics = {
"base_engine": analytics_engine,
"real_time_analytics": True,
"predictive_analytics": True,
"prescriptive_analytics": True,
"visualization": True,
"latest_insights": True,
"analytics_config": analytics_config
}
return enhanced_analytics
def create_latest_multi_modal_application(self, indices: Dict[str, Any]) -> Any:
"""创建多模态应用"""
# 多模态应用构建
multimodal_app = {
"text_index": indices.get("text"),
"image_index": indices.get("image"),
"audio_index": indices.get("audio"),
"video_index": indices.get("video"),
"fusion_engine": self.create_latest_fusion_engine(indices),
"latest_multimodal": True
}
return multimodal_app
def create_latest_fusion_engine(self, indices: Dict[str, Any]) -> Any:
"""创建融合引擎"""
# 融合引擎
fusion_engine = {
"text_weight": 0.4,
"image_weight": 0.3,
"audio_weight": 0.2,
"video_weight": 0.1,
"fusion_strategy": "latest_weighted_average",
"cross_modal_attention": True,
"latest_fusion": True
}
return fusion_engine
核心特性
1. 数据摄取管道
- 1000+格式支持: 支持超过1000种文件格式的加载器
- AI驱动元数据: AI驱动的元数据自动提取和增强
- 语义文本分割: 基于语义理解的文本分割算法
- 实时数据流: 支持实时数据流摄取和处理
- 数据质量评估: 自动数据质量评估和改进建议
2. 高级索引系统
- 向量索引增强: 基于嵌入模型的增强向量索引
- 图谱关系索引: 基于图数据库的关系索引和遍历
- 复合索引策略: 多种索引策略的智能组合和优化
- 动态索引更新: 支持动态索引更新和增量构建
- 索引性能优化: 自动索引性能优化和调优
3. 智能检索系统
- 混合检索: 向量、图谱、关键词检索的智能融合
- 语义理解检索: 基于深度学习的语义理解检索
- 上下文感知检索: 考虑对话上下文的智能检索
- 实时检索优化: 实时检索性能优化和调优
- 检索质量评估: AI驱动的检索质量评估和改进
4. AI应用构建器
- 聊天机器人增强: 增强聊天机器人构建器
- 高级问答系统: 高级问答系统构建器
- 企业搜索系统: 企业级搜索系统构建器
- 个性化推荐: 个性化推荐系统构建器
- 数据分析平台: 数据分析和可视化平台构建器
5. 企业级功能
- 性能监控: 实时性能监控和优化
- 使用分析: 详细的使用模式和行为分析
- 成本追踪: 精确的成本计算和优化建议
- 质量评估: AI驱动的质量评估和改进建议
- 安全审计: 完整的安全事件记录和审计
调用方式与API
1. 基础索引调用
from llama_index.core import VectorStoreIndex, SimpleDirectoryReader
from llama_index.core import StorageContext
# 基础索引调用
def latest_basic_indexing():
"""基础索引调用"""
# 文档读取
documents = SimpleDirectoryReader(
input_dir="./data",
recursive=True,
filename_as_id=True,
file_metadata=lambda x: {"source": x, "timestamp": "2025-09-12"}
).load_data()
# 索引构建
index = VectorStoreIndex.from_documents(
documents,
show_progress=True,
use_async=True,
embed_model="text-embedding-3-large"
)
# 索引持久化
index.storage_context.persist(persist_dir="./latest_index")
return index
# 使用基础索引
latest_index = latest_basic_indexing()
print("Latest index created successfully!")
2. 高级索引调用
from llama_index.core import KnowledgeGraphIndex
from llama_index.graph_stores.neo4j import Neo4jGraphStore
# 高级索引调用
def latest_advanced_indexing():
"""高级索引调用"""
# 文档准备
documents = SimpleDirectoryReader("./data").load_data()
# 图谱存储
graph_store = Neo4jGraphStore(
username="neo4j",
password="password",
url="bolt://localhost:7687"
)
# 知识图谱索引
kg_index = KnowledgeGraphIndex.from_documents(
documents,
max_triplets_per_chunk=10,
include_embeddings=True,
show_progress=True
)
return kg_index
# 使用高级索引
latest_kg_index = latest_advanced_indexing()
print("Latest KG index created successfully!")
3. 检索调用
from llama_index.core import VectorStoreIndex
# 检索调用
def latest_retrieval_call():
"""检索调用"""
# 加载索引
index = VectorStoreIndex.load_from_disk("./latest_index")
# 查询引擎
query_engine = index.as_query_engine(
similarity_top_k=10,
response_mode="compact",
streaming=True
)
# 查询
response = query_engine.query("What are the latest AI developments?")
return response
# 使用检索
latest_response = latest_retrieval_call()
print("Latest retrieval result:", latest_response)
4. AI应用构建
from llama_index.core.chat_engine import CondenseQuestionChatEngine
# AI应用构建
def latest_ai_application():
"""AI应用构建"""
# 加载索引
index = VectorStoreIndex.load_from_disk("./latest_index")
# 聊天引擎
chat_engine = CondenseQuestionChatEngine.from_defaults(
index=index,
llm="gpt-4o",
memory=ChatMemoryBuffer.from_defaults(token_limit=4096),
system_prompt="You are the latest AI assistant with advanced capabilities.",
streaming=True
)
# 对话
response = chat_engine.chat("Tell me about the latest AI developments.")
return response
# 使用AI应用
latest_chat = latest_ai_application()
print("Latest chat response:", latest_chat)
5. 企业级部署
# 企业级Kubernetes部署
apiVersion: apps/v1
kind: Deployment
metadata:
name: llamaindex-enterprise-latest
labels:
app: llamaindex-enterprise
version: "0.11.0"
spec:
replicas: 5
selector:
matchLabels:
app: llamaindex-enterprise
template:
metadata:
labels:
app: llamaindex-enterprise
spec:
containers:
- name: llamaindex-app
image: llamaindex/llamaindex:v0.11.0
ports:
- containerPort: 8080
env:
- name: LLAMA_INDEX_CONFIG
value: "/config/latest_config.yaml"
- name: NEO4J_URI
value: "bolt://neo4j-service:7687"
- name: FAISS_INDEX_PATH
value: "/data/latest_faiss.index"
resources:
requests:
memory: "2Gi"
cpu: "1000m"
limits:
memory: "4Gi"
cpu: "2000m"
volumeMounts:
- name: config-volume
mountPath: /config
- name: data-volume
mountPath: /data
volumes:
- name: config-volume
configMap:
name: llamaindex-config-latest
- name: data-volume
persistentVolumeClaim:
claimName: llamaindex-data-pvc
---
apiVersion: v1
kind: Service
metadata:
name: llamaindex-enterprise-service
spec:
selector:
app: llamaindex-enterprise
ports:
- port: 80
targetPort: 8080
type: LoadBalancer
注:本文档基于LlamaIndex官方最新文档和技术规范整理,具体技术细节可能因版本迭代而更新,请以LlamaIndex官方最新文档为准。
更多推荐
所有评论(0)