Spring Data JPA 对PostgreSQL向量数据的支持
Spring Data JPA支持PostgreSQL向量类型,需添加相关依赖(如hibernate-vector),并通过@JdbcTypeCode注解映射实体字段。Hibernate 6.4+原生支持向量类型,可定义包含float[]数组的实体类。通过自定义@Query可实现相似性搜索等向量操作,或使用Spring AI的PgVectorStore进行高级处理。注意需先在PostgreSQL中
Spring Data JPA can support PostgreSQL’s vector data type, primarily through the pgvector extension and Hibernate’s integration with it.
1. Add Dependencies:
Include the necessary dependencies in your pom.xml (Maven) or build.gradle (Gradle):
spring-boot-starter-data-jpa: For Spring Data JPA functionality.
postgresql: For the PostgreSQL JDBC driver.
hibernate-vector (if using Hibernate 6.4+): This module provides native support for the vector type.
spring-ai-pgvector-store (if using Spring AI for vector database integration): This provides a higher-level abstraction for working with pgvector.
Example Maven Dependencies:
<dependencies>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-data-jpa</artifactId>
</dependency>
<dependency>
<groupId>org.postgresql</groupId>
<artifactId>postgresql</artifactId>
</dependency>
<!-- For Hibernate 6.4+ native vector support -->
<dependency>
<groupId>org.hibernate.orm</groupId>
<artifactId>hibernate-vector</artifactId>
<version>6.4.x.Final</version> <!-- Use your Hibernate version -->
</dependency>
<!-- Optional: If using Spring AI for vector store -->
<dependency>
<groupId>org.springframework.ai</groupId>
<artifactId>spring-ai-pgvector-store</artifactId>
</dependency>
</dependencies>
2. Entity Mapping:
Map your entity field to the vector type in PostgreSQL.
Using Hibernate 6.4+ Native Vector Support:
import org.hibernate.annotations.JdbcTypeCode;
import org.hibernate.type.SqlTypes;
import jakarta.persistence.Column;
import jakarta.persistence.Entity;
import jakarta.persistence.Id;
@Entity
public class MyEntity {
@Id
private Long id;
@Column(name = "embedding")
@JdbcTypeCode(SqlTypes.VECTOR) // Maps to PostgreSQL's VECTOR type
private float[] embedding; // Or List<Float> depending on your preference
// Getters and Setters
}
3. Repository Usage:
You can then use standard Spring Data JPA repository methods to interact with your entities, and Hibernate will handle the mapping to the vector type. For similarity searches or more advanced vector operations, you might need to:
Custom Queries:
Define custom queries in your Spring Data JPA repository using @Query annotations, potentially leveraging PostgreSQL’s pgvector operators (e.g., <-> for L2 distance).
Spring AI’s PgVectorStore:
If using Spring AI, you can leverage its PgVectorStore to perform similarity searches and other vector database operations in a more abstract way.
Example Custom Query:
import org.springframework.data.jpa.repository.JpaRepository;
import org.springframework.data.jpa.repository.Query;
import org.springframework.data.repository.query.Param;
public interface MyEntityRepository extends JpaRepository<MyEntity, Long> {
@Query(value = "SELECT e FROM MyEntity e ORDER BY e.embedding <-> :queryVector ASC LIMIT :limit", nativeQuery = true)
List<MyEntity> findNearestNeighbors(@Param("queryVector") float[] queryVector, @Param("limit") int limit);
}
Note: Ensure the pgvector extension is enabled in your PostgreSQL database instance.
更多推荐



所有评论(0)