如何在离线的Linux服务器上部署 Ollama,并使用 Ollama 管理运行 Qwen 大模型
如何在离线的Linux服务器上部署 Ollama,并使用 Ollama 管理运行 Qwen 大模型
手动安装 Ollama
根据Linux的版本下载对应版本的 Ollama
- 查看Linux CPU型号,使用下面的命令
#查看Linux版本号
cat /proc/version
#查看cpu架构
lscpu
- x86_64 CPU选择下载ollama-linux-amd64;aarch64|arm64 CPU选择下载ollama-linux-arm64
安装和运行
- 在有网络的环境下载好tgz安装包,并上传到离线 Linux 服务器
- 安装,使用下面的命令:
sudo tar -C /usr -xzf ollama-linux-amd64.tgz
- 启动 Ollama,使用下面的命令:
ollama serve
- 另外启动一个终端验证是否运行成功,使用下面的命令:
#查看所有下载的模型
ollama list
这样 Ollama 就算安装完成了。之所以下载 Ollama,是因为 Ollama 提供了大模型运行的所有环境,使用它能方便的在本地运行各种 LLM。
在 Ollama 上部署 Qwen2.5
下载 Qwen2.5
- 在国内 AI 社区 ModelScope 下载 Qwen2.5 模型,国外的 AI 社区 Hugging Face 也可以下载,不过要想下载国外的大模型,例如 Llama,需要填写联系信息进行申请,不过申请了也不一定会给过的。
- 推荐使用 Git 下载,使用下面的命令:
git lfs install
git clone https://www.modelscope.cn/Qwen/Qwen2.5-1.5B-Instruct.git
从 Safetensors 导入模型
- Git 克隆下来的仓库会包含一个 model.safetensors 文件,需要将其格式转换为二进制 .bin 形式,才能由 Ollama 着手导入进行管理。
- 大模型格式转换主要用到一个工具 llama.cpp,使用下面的命令同步 llm/llama.cpp 子模块:
#首先克隆 Ollama 仓库
git clone [git@github.com](mailto:git@github.com):ollama/ollama.git ollama
cd ollama
#然后同步子模块
git submodule init
git submodule update llm/llama.cpp
#接着安装 python 依赖
python3 -m venv llm/llama.cpp/.venv
source llm/llama.cpp/.venv/bin/activate
pip install -r llm/llama.cpp/requirements.txt
- 转换模型Qwen2.5,使用下面的命令:
python llm/llama.cpp/convert_hf_to_gguf.py ./model --outtype f16 --outfile converted.bin
- 编写模型文件 Modelfile (没有后缀名),文件内容如下:
FROM converted.bin
TEMPLATE """{{ if .System }}<|im_start|>system
{{ .System }}<|im_end|>
{{ end }}{{ if .Prompt }}<|im_start|>user
{{ .Prompt }}<|im_end|>
{{ end }}<|im_start|>assistant
"""
SYSTEM """
你是一个乐于助人的助手,但你会用20世纪30年代黑手党暴徒的风格去回答问题
"""
- 将转换后的 .bin 文件和 Modelfile 文件上传到离线的 Linux 服务器的同一目录下,使用下面的命令导入到 Ollama:
ollama create Qwen2.5 -f Modelfile
- 查看和运行大模型,使用下面的命令:
#查看大模型信息
ollama show Qwen2.5
#查看 Ollama 管理的所有大模型
ollama list
#运行大模型
ollama run Qwen2.5
#查看正在运行的大模型
ollama ps
这样 Qwen2.5 就算导入成功了,实际上 llama 工具还可对大模型进行量化,量化后的大模型会更加精确,更加节省系统资源,有关量化的信息可自行研究。
我们该怎样系统的去转行学习大模型 ?
很多想入行大模型的人苦于现在网上的大模型老课程老教材,学也不是不学也不是,基于此,我用做产品的心态来打磨这份大模型教程,深挖痛点并持续修改了近100余次后,终于把整个AI大模型的学习门槛,降到了最低!
您只需要听我讲,跟着我做即可,为了让学习的道路变得更简单,这份大模型教程已经给大家整理并打包,现在将这份 LLM大模型资料
分享出来: 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓
一、大模型经典书籍(免费分享)
AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。
二、640套大模型报告(免费分享)
这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
三、大模型系列视频教程(免费分享)
四、2025最新大模型学习路线(免费分享)
我们把学习路线分成L1到L4四个阶段,一步步带你从入门到进阶,从理论到实战。
L1阶段:启航篇丨极速破界AI新时代
L1阶段:我们会去了解大模型的基础知识,以及大模型在各个行业的应用和分析;学习理解大模型的核心原理、关键技术以及大模型应用场景。
L2阶段:攻坚篇丨RAG开发实战工坊
L2阶段是我们的AI大模型RAG应用开发工程,我们会去学习RAG检索增强生成:包括Naive RAG、Advanced-RAG以及RAG性能评估,还有GraphRAG在内的多个RAG热门项目的分析。
L3阶段:跃迁篇丨Agent智能体架构设计
L3阶段:大模型Agent应用架构进阶实现,我们会去学习LangChain、 LIamaIndex框架,也会学习到AutoGPT、 MetaGPT等多Agent系统,打造我们自己的Agent智能体。
L4阶段:精进篇丨模型微调与私有化部署
L4阶段:大模型的微调和私有化部署,我们会更加深入的探讨Transformer架构,学习大模型的微调技术,利用DeepSpeed、Lamam Factory等工具快速进行模型微调。
L5阶段:专题集丨特训篇 【录播课】
全套的AI大模型学习资源已经整理打包
,有需要的小伙伴可以微信扫描下方二维码
,免费领取
更多推荐
所有评论(0)