前言

在2024年AI大模型的面试中,常问的问题以及答案可能会涵盖多个方面,包括AI大模型的基础知识、训练过程、应用、挑战和前沿趋势等。由于我无法直接附上174题的完整面试题库及其答案,我将基于提供的信息和当前AI大模型领域的热点,给出一些常见的问题和答案示例。

在这里插入图片描述

1. 基础知识

问题:请简要介绍目前主流的大模型体系有哪些?

答案
目前主流的大模型体系主要包括:

  • GPT系列:由OpenAI发布,基于Transformer架构的语言模型,包括GPT-1、GPT-2、GPT-3、ChatGPT等。这些模型具有强大的生成能力和语言理解能力。
  • BERT:由Google发布,一种基于Transformer架构的双向预训练语言模型。BERT在多个自然语言处理任务上取得了显著效果。
  • XLNet:由CMU和Google Brain发布,一种基于Transformer架构的自回归预训练语言模型。XLNet通过自回归方式预训练,能够建模全局依赖关系。
  • RoBERTa:由Meta(原Facebook)发布,基于BERT进行改进,通过更大规模的数据和更长的训练时间,取得了更好的性能。
  • T5:由Google发布,一种基于Transformer架构的多任务预训练语言模型。T5可以处理多种自然语言处理任务,如文本分类、机器翻译、问答等。
2. 训练过程

问题:大型语言模型(LLM)通常如何进行训练?

答案
大型语言模型通常经历预训练和微调两个过程。

  • 预训练:模型接触到来自多个来源的大量文本数据,从而扩展其知识库并广泛掌握语言。
  • 微调:为了提高性能,在特定任务或领域(例如,语言翻译或问答)上对预训练的模型进行再训练。
3. 应用

问题:LLM的典型应用有哪些?

答案
LLM有许多应用,包括但不限于:

  • 文本创作:如写作故事、文章或剧本。
  • 语言翻译:将一种语言翻译成另一种语言。
  • 文本摘要:自动提取长文本的主要内容。
  • 问答系统:回答用户提出的问题。
  • 情感分析:分析文本中的情感倾向。
  • 信息检索:从大量信息中检索出与用户需求相关的内容。
  • 代码开发:辅助编程人员编写代码,甚至自动生成代码片段。
4. 挑战和前沿趋势

问题:你认为当前AI大模型面临的主要挑战是什么?

答案
当前AI大模型面临的主要挑战包括:

  • 计算资源:大模型需要大量的计算资源进行训练和推理。
  • 数据偏见:训练数据中的偏见可能导致模型产生不公平或歧视性的结果。
  • 可解释性:大模型通常缺乏可解释性,使得人们难以理解其决策过程。
  • 模型效率:如何在保证性能的同时提高模型的效率,减少资源消耗。
面试题笔记分享

为了助力朋友们跳槽面试、升职加薪、职业困境,提高自己的技术,本文给大家整了一套涵盖Android所有技术栈的快速学习方法和笔记。目前已经收到了七八个网友的反馈,说是面试问到了很多这里面的知识点。

每一章节都是站在企业考察思维出发,作为招聘者角度回答。从考察问题延展到考察知识点,再到如何优雅回答一面俱全,可以说是求职面试的必备宝典,每一部分都有上百页内容,接下来具体展示,完整版可直接下方扫码领取。
😝有需要的小伙伴,可以V扫描下方二维码免费领取🆓

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

如何学习AI大模型?

大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业?”“谁的饭碗又将不保了?”等问题热议不断。

不如成为「掌握AI工具的技术人」,毕竟AI时代,谁先尝试,谁就能占得先机!

想正式转到一些新兴的 AI 行业,不仅需要系统的学习AI大模型。同时也要跟已有的技能结合,辅助编程提效,或上手实操应用,增加自己的职场竞争力。

但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高

那么针对所有自学遇到困难的同学们,我帮大家系统梳理大模型学习脉络,将这份 LLM大模型资料 分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

👉[CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)]()👈

学习路线

在这里插入图片描述

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

在这里插入图片描述

👉学会后的收获:👈

• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

在这里插入图片描述

1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

Logo

有“AI”的1024 = 2048,欢迎大家加入2048 AI社区

更多推荐