下面开始第三部分-部署LangGraph Platform教程;

参考文档教程:

https://langchain-ai.github.io/langgraph/tutorials/langgraph-platform/local-server/

LangGraph Platform 快速入门 本指南介绍如何在本地运行 LangGraph 应用程序。

  1. 安装 LangGraph CLI

Python >= 3.11 is required.

pip install -U “langgraph-cli[inmem]” -i https://pypi.tuna.tsinghua.edu.cn/simple/

或者

uv pip install -U “langgraph-cli[inmem]” -i https://pypi.tuna.tsinghua.edu.cn/simple/

  1. 创建一个 LangGraph 应用程序

命令示例:

langgraph new path/to/your/app --template new-langgraph-project-python

创建一个空的 LangGraph 工程,名字为 project_demo

langgraph new project_demo --template new-langgraph-project-python

实际上会下载一个模板项目,并解压到指定目录。,网络不好,容易失败;

📥 Attempting to download repository as a ZIP archive…

URL:

https://github.com/langchain-ai/new-langgraph-project/archive/refs/heads/main.zip

这将创建一个空的 LangGraph 工程。您可以通过将 中的代码替换为您的代理代码来修改它。例如:src/agent/graph.py

  1. 安装项目的依赖包

下载不好可以跳过,直接进入本项目下的

deploy_dir/project_demo 目录

进入项目目录

cd deploy_dir/project_demo

安装依赖包

pip install -e . -i https://pypi.tuna.tsinghua.edu.cn/simple/

  1. 创建变量文件.env

你会在新的 LangGraph 应用程序的根目录中找到 a。在新 LangGraph 应用程序的根目录中创建一个文件,并将文件内容复制到其中,并填写必要的 API 密钥:.env.example 复制到 .env 文件

cp .env.example .env

5.修改 src/agent/graph.py

下面展示完整的graph.py文件内容,您可以根据自己的需求进行修改。

from langgraph.prebuilt import create_react_agent

# 先创建llm
import os
from langchain.chat_models import init_chat_model

API_KEY = "sk-123"

BASE_URL = "https://api.deepseek.com"

os.environ["OPENAI_API_KEY"] = API_KEY
os.environ["OPENAI_API_BASE"] = BASE_URL

llm = init_chat_model("openai:deepseek-chat")

defget_weather(city: str) -> str:
"""Get weather for a given city."""
returnf"It's always sunny in {city}!"

graph = create_react_agent(
    model=llm,
    tools=[get_weather],
    prompt="You are a helpful assistant"
)

6 在本地启动 LangGraph 服务器

langgraph dev

访问 地址:

  • 🚀 API: http://127.0.0.1:2024
  • 🎨 Studio UI: https://smith.langchain.com/studio/?baseUrl=http://127.0.0.1:2024
  • 📚 API Docs: http://127.0.0.1:2024/docs

7 图形化界面调试,访问:

https://smith.langchain.com/studio/?baseUrl=http://127.0.0.1:2024

输入内容:

南京的天气怎么样?

视频演示

8 接口文档:

http://127.0.0.1:2024/docs

9 发送curl的api请求

# 发送curl的api请求

curl --location --request POST 'http://127.0.0.1:2024/runs/stream' \
--header 'Content-Type: application/json' \
--data-raw '{
    "assistant_id": "agent",
    "input": {
        "messages": [
            {
                "role": "human",
                "content": "南京的天气怎么样?"
            }
        ]
    },
    "stream_mode": [
        "values"
    ]
}'
# api返回的输出结果

event: metadata
data: {"run_id":"1f03b9e9-0a61-6c1f-8cbf-396ccf9d5d4e","attempt":1}
id: 0

event: values
data: {"messages":[{"content":"南京的天气怎么样?","additional_kwargs":{},"response_metadata":{},"type":"human","name":null,"id":"a2fbfecb-360b-494d-a740-c4adb4ba0b02","example":false}]}
id: 1

: heartbeat

event: values
data: {"messages":[{"content":"南京的天气怎么样?","additional_kwargs":{},"response_metadata":{},"type":"human","name":null,"id":"a2fbfecb-360b-494d-a740-c4adb4ba0b02","example":false},{"content":"","additional_kwargs":{"tool_calls":[{"id":"call_0_42108290-58b1-49b2-84c0-32cf4a68d3d5","function":{"arguments":"{\"city\":\"南京\"}","name":"get_weather"},"type":"function","index":0}],"refusal":null},"response_metadata":{"token_usage":{"completion_tokens":19,"prompt_tokens":107,"total_tokens":126,"completion_tokens_details":null,"prompt_tokens_details":{"audio_tokens":null,"cached_tokens":64},"prompt_cache_hit_tokens":64,"prompt_cache_miss_tokens":43},"model_name":"deepseek-chat","system_fingerprint":"fp_8802369eaa_prod0425fp8","id":"7e0548a8-60b4-46be-aa66-808f6774994a","service_tier":null,"finish_reason":"tool_calls","logprobs":null},"type":"ai","name":null,"id":"run--4abeeefd-8e32-495f-8e00-22622077b575-0","example":false,"tool_calls":[{"name":"get_weather","args":{"city":"南京"},"id":"call_0_42108290-58b1-49b2-84c0-32cf4a68d3d5","type":"tool_call"}],"invalid_tool_calls":[],"usage_metadata":{"input_tokens":107,"output_tokens":19,"total_tokens":126,"input_token_details":{"cache_read":64},"output_token_details":{}}}]}
id: 2

event: values
data: {"messages":[{"content":"南京的天气怎么样?","additional_kwargs":{},"response_metadata":{},"type":"human","name":null,"id":"a2fbfecb-360b-494d-a740-c4adb4ba0b02","example":false},{"content":"","additional_kwargs":{"tool_calls":[{"id":"call_0_42108290-58b1-49b2-84c0-32cf4a68d3d5","function":{"arguments":"{\"city\":\"南京\"}","name":"get_weather"},"type":"function","index":0}],"refusal":null},"response_metadata":{"token_usage":{"completion_tokens":19,"prompt_tokens":107,"total_tokens":126,"completion_tokens_details":null,"prompt_tokens_details":{"audio_tokens":null,"cached_tokens":64},"prompt_cache_hit_tokens":64,"prompt_cache_miss_tokens":43},"model_name":"deepseek-chat","system_fingerprint":"fp_8802369eaa_prod0425fp8","id":"7e0548a8-60b4-46be-aa66-808f6774994a","service_tier":null,"finish_reason":"tool_calls","logprobs":null},"type":"ai","name":null,"id":"run--4abeeefd-8e32-495f-8e00-22622077b575-0","example":false,"tool_calls":[{"name":"get_weather","args":{"city":"南京"},"id":"call_0_42108290-58b1-49b2-84c0-32cf4a68d3d5","type":"tool_call"}],"invalid_tool_calls":[],"usage_metadata":{"input_tokens":107,"output_tokens":19,"total_tokens":126,"input_token_details":{"cache_read":64},"output_token_details":{}}},{"content":"It's always sunny in 南京!","additional_kwargs":{},"response_metadata":{},"type":"tool","name":"get_weather","id":"2d8a9d54-ea9b-47ff-a8cc-6770dc3d5561","tool_call_id":"call_0_42108290-58b1-49b2-84c0-32cf4a68d3d5","artifact":null,"status":"success"}]}
id: 3

: heartbeat

event: values
data: {"messages":[{"content":"南京的天气怎么样?","additional_kwargs":{},"response_metadata":{},"type":"human","name":null,"id":"a2fbfecb-360b-494d-a740-c4adb4ba0b02","example":false},{"content":"","additional_kwargs":{"tool_calls":[{"id":"call_0_42108290-58b1-49b2-84c0-32cf4a68d3d5","function":{"arguments":"{\"city\":\"南京\"}","name":"get_weather"},"type":"function","index":0}],"refusal":null},"response_metadata":{"token_usage":{"completion_tokens":19,"prompt_tokens":107,"total_tokens":126,"completion_tokens_details":null,"prompt_tokens_details":{"audio_tokens":null,"cached_tokens":64},"prompt_cache_hit_tokens":64,"prompt_cache_miss_tokens":43},"model_name":"deepseek-chat","system_fingerprint":"fp_8802369eaa_prod0425fp8","id":"7e0548a8-60b4-46be-aa66-808f6774994a","service_tier":null,"finish_reason":"tool_calls","logprobs":null},"type":"ai","name":null,"id":"run--4abeeefd-8e32-495f-8e00-22622077b575-0","example":false,"tool_calls":[{"name":"get_weather","args":{"city":"南京"},"id":"call_0_42108290-58b1-49b2-84c0-32cf4a68d3d5","type":"tool_call"}],"invalid_tool_calls":[],"usage_metadata":{"input_tokens":107,"output_tokens":19,"total_tokens":126,"input_token_details":{"cache_read":64},"output_token_details":{}}},{"content":"It's always sunny in 南京!","additional_kwargs":{},"response_metadata":{},"type":"tool","name":"get_weather","id":"2d8a9d54-ea9b-47ff-a8cc-6770dc3d5561","tool_call_id":"call_0_42108290-58b1-49b2-84c0-32cf4a68d3d5","artifact":null,"status":"success"},{"content":"南京的天气是晴天!","additional_kwargs":{"refusal":null},"response_metadata":{"token_usage":{"completion_tokens":6,"prompt_tokens":146,"total_tokens":152,"completion_tokens_details":null,"prompt_tokens_details":{"audio_tokens":null,"cached_tokens":128},"prompt_cache_hit_tokens":128,"prompt_cache_miss_tokens":18},"model_name":"deepseek-chat","system_fingerprint":"fp_8802369eaa_prod0425fp8","id":"46b9d414-902a-4813-9c08-beb8f97bd54e","service_tier":null,"finish_reason":"stop","logprobs":null},"type":"ai","name":null,"id":"run--875951ca-7cd5-42c7-8df7-0a53f080513d-0","example":false,"tool_calls":[],"invalid_tool_calls":[],"usage_metadata":{"input_tokens":146,"output_tokens":6,"total_tokens":152,"input_token_details":{"cache_read":128},"output_token_details":{}}}]}
id: 4

完整代码访问github地址:

https://github.com/aixiaoxin123/langgraph_project

大模型算是目前当之无愧最火的一个方向了,算是新时代的风口!有小伙伴觉得,作为新领域、新方向人才需求必然相当大,与之相应的人才缺乏、人才竞争自然也会更少,那转行去做大模型是不是一个更好的选择呢?是不是更好就业呢?是不是就暂时能抵抗35岁中年危机呢?

答案当然是这样,大模型必然是新风口!

那如何学习大模型 ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。但是具体到个人,只能说是:

最先掌握AI的人,将会比较晚掌握AI的人有竞争优势。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

但现在很多想入行大模型的人苦于现在网上的大模型老课程老教材,学也不是不学也不是,基于此我用做产品的心态来打磨这份大模型教程,深挖痛点并持续修改了近100余次后,终于把整个AI大模型的学习路线完善出来!

在这里插入图片描述

在这个版本当中:

您只需要听我讲,跟着我做即可,为了让学习的道路变得更简单,这份大模型路线+学习教程已经给大家整理并打包分享出来, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

👉CSDN大礼包🎁:全网最全《LLM大模型学习资源包》免费分享(安全咨料,放心领取)👈

一、大模型经典书籍(免费分享)

AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源

在这里插入图片描述

二、640套大模型报告(免费分享)

这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
在这里插入图片描述

三、大模型系列视频教程(免费分享)

在这里插入图片描述

四、2025最新大模型学习路线(免费分享)

我们把学习路线分成L1到L4四个阶段,一步步带你从入门到进阶,从理论到实战。

img

L1阶段:启航篇丨极速破界AI新时代

L1阶段:了解大模型的基础知识,以及大模型在各个行业的应用和分析,学习理解大模型的核心原理、关键技术以及大模型应用场景。

img

L2阶段:攻坚篇丨RAG开发实战工坊

L2阶段:AI大模型RAG应用开发工程,主要学习RAG检索增强生成:包括Naive RAG、Advanced-RAG以及RAG性能评估,还有GraphRAG在内的多个RAG热门项目的分析。

img

L3阶段:跃迁篇丨Agent智能体架构设计

L3阶段:大模型Agent应用架构进阶实现,主要学习LangChain、 LIamaIndex框架,也会学习到AutoGPT、 MetaGPT等多Agent系统,打造Agent智能体。

img

L4阶段:精进篇丨模型微调与私有化部署

L4阶段:大模型的微调和私有化部署,更加深入的探讨Transformer架构,学习大模型的微调技术,利用DeepSpeed、Lamam Factory等工具快速进行模型微调,并通过Ollama、vLLM等推理部署框架,实现模型的快速部署。

img

L5阶段:专题集丨特训篇 【录播课】

img

全套的AI大模型学习资源已经整理打包,有需要的小伙伴可以微信扫描下方二维码免费领取

👉CSDN大礼包🎁:全网最全《LLM大模型学习资源包》免费分享(安全资料,放心领取)👈

Logo

有“AI”的1024 = 2048,欢迎大家加入2048 AI社区

更多推荐