简介

UltraRAG 2.0是由清华大学、东北大学和OpenBMB联合开发的RAG框架,基于MCP架构将核心组件封装为标准化服务器,通过YAML文件声明复杂逻辑,实现极低代码量快速构建多阶段推理系统。这一设计显著降低了技术门槛,让研究者能专注于算法创新而非工程实现,已在GitHub开源,内置17个主流benchmark任务和多种高质量baseline。


清华大学 、东北大学、OpenBMB 联合 UltraRAG 2.0:几十行代码实现高性能 RAG,让科研专注思想创新!

检索增强生成系统(RAG)正从早期“检索+生成”的简单拼接,走向融合 自适应知识组织多轮推理动态检索 的复杂知识系统(典型代表如 DeepResearchSearch-o1)。但这种复杂度的提升,使科研人员在 方法复现快速迭代新想法 时,面临着高昂的工程实现成本。

为了解决这一痛点,清华大学 THUNLP 实验室、东北大学 NEUIR 实验室、OpenBMB 与 AI9stars 联合推出 UltraRAG 2.0 (UR-2.0)—— 首个基于 Model Context Protocol (MCP) 架构设计的 RAG 框架。这一设计让科研人员只需编写 YAML 文件,就可以直接声明串行、循环、条件分支等复杂逻辑,从而以极低的代码量快速实现多阶段推理系统。

FlashRAG 与 UltraRAG 的代码实现对比

FlashRAG

UltraRAG

其核心思路是:

  • 组件化封装:将RAG 的核心组件封装为标准化的独立 MCP Server
  • 灵活调用与扩展:提供 函数级 Tool 接口,支持功能的灵活调用与扩展;
  • 轻量流程编排:借助 MCP Client,建立自上而下的简洁化链路搭建;

与传统框架相比,UltraRAG 2.0 显著降低了复杂 RAG 系统的 技术门槛与学习成本,让研究者能够将更多精力投入到 实验设计与算法创新 上,而不是陷入冗长的工程实现。

秘诀:MCP 架构与原生流程控制

在不同的 RAG 系统中,检索、生成等核心能力在功能上具有高度相似性,但由于开发者实现策略各异,模块之间往往缺乏统一接口,难以跨项目复用。Model Context Protocol (MCP) 作为一种开放协议,规范了为大型语言模型(LLMs)提供上下文的标准方式,并采用 Client–Server 架构,使得遵循该协议开发的 Server 组件可以在不同系统间无缝复用。

受此启发,UltraRAG 2.0 基于 MCP 架构,将 RAG 系统中的检索、生成、评测等核心功能抽象并封装为相互独立的 MCP Server,并通过标准化的函数级 Tool 接口实现调用。这一设计既保证了模块功能扩展的灵活性,又允许新模块以“热插拔”的方式接入,无需对全局代码进行侵入式修改。在科研场景中,这种架构让研究者能够以极低的代码量快速适配新的模型或算法,同时保持整体系统的稳定性与一致性。

复杂 RAG 推理框架的开发具有显著挑战,而 UltraRAG 2.0 之所以能够在低代码条件下支持复杂系统的构建,核心在于其底层对多结构 Pipeline 流程控制的原生支持。无论是串行、循环还是条件分支,所有控制逻辑均可在 YAML 层完成定义与调度,覆盖复杂推理任务所需的多种流程表达方式。在实际运行中,推理流程的调度由内置 Client 执行,其逻辑完全由用户编写的外部 Pipeline YAML 脚本 脚本描述,从而实现与底层实现的解耦。开发者可以像使用编程语言关键字一样调用 loop、step 等指令,以声明的方式快速构建多阶段推理流程。

通过将 MCP 架构原生流程控制深度融合,UltraRAG 2.0 让复杂 RAG 系统的搭建像“编排流程”一样自然高效。此外,框架内置 17 个主流 benchmark 任务与多种高质量 baseline,配合统一的评测体系与知识库支持,进一步提升了系统开发的效率与实验的可复现性。

https://github.com/OpenBMB/UltraRAG

AI大模型从0到精通全套学习大礼包

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

只要你是真心想学AI大模型,我这份资料就可以无偿共享给你学习。大模型行业确实也需要更多的有志之士加入进来,我也真心希望帮助大家学好这门技术,如果日后有什么学习上的问题,欢迎找我交流,有技术上面的问题,我是很愿意去帮助大家的!

如果你也想通过学大模型技术去帮助就业和转行,可以扫描下方链接👇👇
大模型重磅福利:入门进阶全套104G学习资源包免费分享!
在这里插入图片描述

01.从入门到精通的全套视频教程

包含提示词工程、RAG、Agent等技术点
在这里插入图片描述
​​

02.AI大模型学习路线图(还有视频解说)

全过程AI大模型学习路线

在这里插入图片描述
在这里插入图片描述


​​

03.学习电子书籍和技术文档

市面上的大模型书籍确实太多了,这些是我精选出来的

在这里插入图片描述
在这里插入图片描述

04.大模型面试题目详解

在这里插入图片描述

在这里插入图片描述

05.这些资料真的有用吗?

这份资料由我和鲁为民博士共同整理,鲁为民博士先后获得了北京清华大学学士和美国加州理工学院博士学位,在包括IEEE Transactions等学术期刊和诸多国际会议上发表了超过50篇学术论文、取得了多项美国和中国发明专利,同时还斩获了吴文俊人工智能科学技术奖。目前我正在和鲁博士共同进行人工智能的研究。

所有的视频由智泊AI老师录制,且资料与智泊AI共享,相互补充。这份学习大礼包应该算是现在最全面的大模型学习资料了。

资料内容涵盖了从入门到进阶的各类视频教程和实战项目,无论你是小白还是有些技术基础的,这份资料都绝对能帮助你提升薪资待遇,转行大模型岗位。

在这里插入图片描述
在这里插入图片描述

智泊AI始终秉持着“让每个人平等享受到优质教育资源”的育人理念‌,通过动态追踪大模型开发、数据标注伦理等前沿技术趋势‌,构建起"前沿课程+智能实训+精准就业"的高效培养体系。

课堂上不光教理论,还带着学员做了十多个真实项目。学员要亲自上手搞数据清洗、模型调优这些硬核操作,把课本知识变成真本事‌!

在这里插入图片描述
如果说你是以下人群中的其中一类,都可以来智泊AI学习人工智能,找到高薪工作,一次小小的“投资”换来的是终身受益!

应届毕业生‌:无工作经验但想要系统学习AI大模型技术,期待通过实战项目掌握核心技术。

零基础转型‌:非技术背景但关注AI应用场景,计划通过低代码工具实现“AI+行业”跨界‌。

业务赋能 ‌突破瓶颈:传统开发者(Java/前端等)学习Transformer架构与LangChain框架,向AI全栈工程师转型‌。

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

在这里插入图片描述

Logo

有“AI”的1024 = 2048,欢迎大家加入2048 AI社区

更多推荐