1.源码分析

SGI-STL30版本源代码,map和set的源代码在map/set/stl_map.h/stl_set.h/stl_tree.h等⼏个头⽂件 中。 map和set的实现结构框架核⼼部分截取出来如下:

// set
#ifndef __SGI_STL_INTERNAL_TREE_H
#include <stl_tree.h>
#endif
#include <stl_set.h>
#include <stl_multiset.h>
// map
#ifndef __SGI_STL_INTERNAL_TREE_H
#include <stl_tree.h>
#endif
#include <stl_map.h>
#include <stl_multimap.h>
// stl_set.h
template <class Key, class Compare = less<Key>, class Alloc = alloc>
class set {
public:
	// typedefs:
	typedef Key key_type;
	typedef Key value_type;
private:
	typedef rb_tree<key_type, value_type,
		identity<value_type>, key_compare, Alloc> rep_type;
	rep_type t; // red-black tree representing set
};
// stl_map.h
template <class Key, class T, class Compare = less<Key>, class Alloc = alloc>
class map {
public:
	// typedefs:
	typedef Key key_type;
	typedef T mapped_type;
	typedef pair<const Key, T> value_type;
private:
	typedef rb_tree<key_type, value_type,
		select1st<value_type>, key_compare, Alloc> rep_type;
	rep_type t; // red-black tree representing map
};
// stl_tree.h
struct __rb_tree_node_base
{
	typedef __rb_tree_color_type color_type;
	typedef __rb_tree_node_base* base_ptr;
	color_type color;
	base_ptr parent;
	base_ptr left;
	base_ptr right;
};
// stl_tree.h
template <class Key, class Value, class KeyOfValue, class Compare, class Alloc
	= alloc>
class rb_tree {
protected:
	typedef void* void_pointer;
	typedef __rb_tree_node_base* base_ptr;
	typedef __rb_tree_node<Value> rb_tree_node;
	typedef rb_tree_node* link_type;
	typedef Key key_type;
	typedef Value value_type;
public:
	// insert⽤的是第⼆个模板参数做形参
	pair<iterator, bool> insert_unique(const value_type& x);
	// erase和find⽤第⼀个模板参数做形参
	size_type erase(const key_type& x);
	iterator find(const key_type& x);
protected:
	size_type node_count; // keeps track of size of tree
	link_type header;
};
template <class Value>
struct __rb_tree_node : public __rb_tree_node_base
{
	typedef __rb_tree_node<Value>* link_type;
	Value value_field;
};
通过下图对框架的分析,我们可以看到源码中rb_tree⽤了⼀个巧妙的泛型思想实现,rb_tree是实
现key的搜索场景,还是key/value的搜索场景不是直接写死的,⽽是由第⼆个模板参数Value决定
_rb_tree_node中存储的数据类型。
set实例化rb_tree时第⼆个模板参数给的是key,map实例化rb_tree时第⼆个模板参数给的是
pair<const key, T>,这样⼀颗红⿊树既可以实现key搜索场景的set,也可以实现key/value搜索场
景的map。
要注意⼀下,源码⾥⾯模板参数是⽤T代表value,⽽内部写的value_type不是我们我们⽇常
key/value场景中说的value,源码中的value_type反⽽是红⿊树结点中存储的真实的数据的类型
rb_tree第⼆个模板参数Value已经控制了红⿊树结点中存储的数据类型,为什么还要传第⼀个模板参数Key呢?尤其是set,两个模板参数是⼀样的。要注意的是对于map和set,find/erase时的函数参数都是Key,所以第⼀个模板参数是传给find/erase等函数做形参的类型的。对于set⽽⾔两个参数是⼀样的,但是对于map⽽⾔就完全不⼀样了,map insert的是pair对象,但是find和ease的是Key对象。
这⾥源码命名⻛格⽐较乱,set模板参数⽤的Key命名,map⽤的是Key和T命名,⽽rb_tree⽤的⼜是Key和Value。

2. 模拟实现map和set

2.1 实现出复⽤红⿊树的框架,并⽀持insert

参考源码框架,map和set复⽤之前我们实现的红⿊树。
我们这⾥相⽐源码调整⼀下,key参数就⽤K,value参数就⽤V,红⿊树中的数据类型,我们使⽤
T。
其次因为RBTree实现了泛型不知道T参数导致是K,还是pair<K, V>,那么insert内部进⾏插⼊逻辑⽐较时,就没办法进⾏⽐较,因为pair的默认⽀持的是key和value⼀起参与⽐较,我们需要时的任何时候只⽐较key,所以我们在map和set层分别实现⼀个MapKeyOfT和SetKeyOfT的仿函数传给RBTree的KeyOfT,然后RBTree中通过KeyOfT仿函数取出T类型对象中的key,再进⾏⽐较。
// 源码中pair⽀持的<重载实现
template <class T1, class T2>
bool operator< (const pair<T1, T2>& lhs, const pair<T1, T2>& rhs)
{
	return lhs.first < rhs.first || (!(rhs.first < lhs.first) &&
		lhs.second < rhs.second);
}
// Mymap.h
namespace sy
{
	template<class K, class V>
	class map
	{
		struct MapKeyOfT
		{
			const K& operator()(const pair<K, V>& kv)
			{
				return kv.first;
			}
		};
	public:
		bool insert(const pair<K, V>& kv)
		{
			return _t.Insert(kv);
		}
	private:
		RBTree<K, pair<K, V>, MapKeyOfT> _t;
	};
}
// Myset.h
namespace sy
{
	template<class K>
	class set
	{
		struct SetKeyOfT
		{
			const K& operator()(const K& key)
			{
				return key;
			}
		};
	public:
		bool insert(const K& key)
		{
			return _t.Insert(key);
		}
	private:
		RBTree<K, K, SetKeyOfT> _t;
	};
}
// RBTree.h
enum Colour
{
	RED,
	BLACK
};
template<class T>
struct RBTreeNode
{
	T _data;
	RBTreeNode<T>* _left;
	RBTreeNode<T>* _right;
	RBTreeNode<T>* _parent;
	Colour _col;
	RBTreeNode(const T& data)
		: _data(data)
		, _left(nullptr)
		, _right(nullptr)
		, _parent(nullptr)
	{}
};
// 实现步骤:
// 1、实现红⿊树
// 2、封装map和set框架,解决KeyOfT
// 3、iterator
// 4、const_iterator
// 5、key不⽀持修改的问题
// 6、operator[]
template<class K, class T, class KeyOfT>
class RBTree
{
private:
	typedef RBTreeNode<T> Node;
	Node* _root = nullptr;
public:
	bool Insert(const T& data)
	{
		if (_root == nullptr)
		{
			_root = new Node(data);
			_root->_col = BLACK;
			return true;
		}
		KeyOfT kot;
		Node* parent = nullptr;
		Node* cur = _root;
		while (cur)
		{
			if (kot(cur->_data) < kot(data))
			{
				parent = cur;
				cur = cur->_right;
			}
			else if (kot(cur->_data) > kot(data))
			{
				parent = cur;
				cur = cur->_left;
			}
			else
			{
				return false;
			}
		}
		cur = new Node(data);
		Node* newnode = cur;
		// 新增结点。颜⾊给红⾊
		cur->_col = RED;
		if (kot(parent->_data) < kot(data))
		{
			parent->_right = cur;
		}
		else
		{
			parent->_left = cur;
		}
		cur->_parent = parent;
		//...
		return true;
	}
};

2.2 ⽀持iterator的实现

iterator核⼼源代码

struct __rb_tree_base_iterator
{
	typedef __rb_tree_node_base::base_ptr base_ptr;
	base_ptr node;
	void increment()
	{
		if (node->right != 0) {
			node = node->right;
			while (node->left != 0)
				node = node->left;
		}
		else {
			base_ptr y = node->parent;
			while (node == y->right) {
				node = y;
				y = y->parent;
			}
			if (node->right != y)
				node = y;
		}
	}
	void decrement()
	{
			if (node->color == __rb_tree_red &&
				node->parent->parent == node)
				node = node->right;
			else if (node->left != 0) {
				base_ptr y = node->left;
				while (y->right != 0)
					y = y->right;
				node = y;
			}
			else {
				base_ptr y = node->parent;
				while (node == y->left) {
					node = y;
					y = y->parent;
				}
				node = y;
			}
	}
};
template <class Value, class Ref, class Ptr>
struct __rb_tree_iterator : public __rb_tree_base_iterator
{
	typedef Value value_type;
	typedef Ref reference;
	typedef Ptr pointer;
	typedef __rb_tree_iterator<Value, Value&, Value*> iterator;
	__rb_tree_iterator() {}
	__rb_tree_iterator(link_type x) { node = x; }
	__rb_tree_iterator(const iterator& it) { node = it.node; }
	reference operator*() const { return link_type(node)->value_field; }
#ifndef __SGI_STL_NO_ARROW_OPERATOR
	pointer operator->() const { return &(operator*()); }
#endif /* __SGI_STL_NO_ARROW_OPERATOR */
	self& operator++() { increment(); return *this; }
	self& operator--() { decrement(); return *this; }
	inline bool operator==(const __rb_tree_base_iterator& x,
		const __rb_tree_base_iterator& y) {
		return x.node == y.node;
	}
	inline bool operator!=(const __rb_tree_base_iterator& x,
		const __rb_tree_base_iterator& y) {
		return x.node != y.node;
	}

iterator实现思路分析

iterator实现的⼤框架跟list的iterator思路是⼀致的,⽤⼀个类型封装结点的指针,再通过重载运算
符实现,迭代器像指针⼀样访问的⾏为。
这⾥的难点是operator++和operator--的实现。之前使⽤部分,我们分析了,map和set的迭代器⾛ 的是中序遍历,左⼦树->根结点->右⼦树,那么begin()会返回中序第⼀个结点的iterator也就是10所在结点的迭代器。
迭代器++的核⼼逻辑就是不看全局,只看局部,只考虑当前中序局部要访问的下⼀个结点。
迭代器++时,如果it指向的结点的右⼦树不为空,代表当前结点已经访问完了,要访问下⼀个结点是右⼦树的中序第⼀个,⼀棵树中序第⼀个是最左结点,所以直接找右⼦树的最左结点即可。
迭代器++时,如果it指向的结点的右⼦树空,代表当前结点已经访问完了且当前结点所在的⼦树也访问完了,要访问的下⼀个结点在当前结点的祖先⾥⾯,所以要沿着当前结点到根的祖先路径向上找
如果当前结点是⽗亲的左,根据中序左⼦树->根结点->右⼦树,那么下⼀个访问的结点就是当前结点的⽗亲;如下图:it指向25,25右为空,25是30的左,所以下⼀个访问的结点就是30。
如果当前结点是⽗亲的右,根据中序左⼦树->根结点->右⼦树,当前当前结点所在的⼦树访问完
了,当前结点所在⽗亲的⼦树也访问完了,那么下⼀个访问的需要继续往根的祖先中去找,直到找
到孩⼦是⽗亲左的那个祖先就是中序要访问的下⼀个结点。如下图:it指向15,15右为空,15是10
的右,15所在⼦树话访问完了,10所在⼦树也访问完了,继续往上找,10是18的左,那么下⼀个
访问的结点就是18。
end()如何表⽰呢?如下图:当it指向50时,++it时,50是40的右,40是30的右,30是18的右,18
到根没有⽗亲,没有找到孩⼦是⽗亲左的那个祖先,这是⽗亲为空了,那我们就把it中的结点指针
置为nullptr,我们⽤nullptr去充当end。需要注意的是stl源码中,红⿊树增加了⼀个哨兵位头结点
做为end(),这哨兵位头结点和根互为⽗亲,左指向最左结点,右指向最右结点。相⽐我们⽤
nullptr作为end(),差别不⼤,他能实现的,我们也能实现。只是--end()判断到结点时空,特殊处
理⼀下,让迭代器结点指向最右结点。具体参考迭代器--实现。
迭代器--的实现跟++的思路完全类似,逻辑正好反过来即可,因为他访问顺序是右⼦树->根结点->左⼦树,具体参考代码实现。
set的iterator也不⽀持修改,我们把set的第⼆个模板参数改成const K即可, RBTree<K,
const K, SetKeyOfT> _t;
map的iterator不⽀持修改key但是可以修改value,我们把map的第⼆个模板参数pair的第⼀个参
数改成const K即可, RBTree<K, pair<const K, V>, MapKeyOfT> _t;
⽀持完整的迭代器还有很多细节需要修改,具体参考下⾯的代码。

3.RBTree.h

#pragma once
enum colour
{
	RED,
	BLACK
};
template<class T>
struct RBTreeNode
{
	T _data;
	RBTreeNode<T>* _left;
	RBTreeNode<T>* _right;
	RBTreeNode<T>* _parent;
	colour _col;
	RBTreeNode(const T& data)
		: _left(nullptr)
		, _right(nullptr)
		, _parent(nullptr)
		, _data(data)
	{}
};

template <class T, class Ref, class Ptr>
struct RBTreeIterator
{
	typedef RBTreeNode<T> Node;
	typedef RBTreeIterator<T, Ref, Ptr> Self;
	Node* _node;
	Node* _root;
	RBTreeIterator(Node* node,Node* root)
		:_node(node)
		,_root(root)
	{}
	Self operator++()
	{
		//如果it指向的结点的右⼦树不为空,代表当前结点已经访问完了
		//要访问下⼀个结点是右⼦树的中序第⼀个
		//⼀棵树中序第⼀个是最左结点,所以直接找右⼦树的最左结点
		if (_node->_right)
		{
			Node* leftmax = _node->_right;
			while (leftmax->_left)
			{
				leftmax = leftmax->_left;
			}
			_node = leftmax;
		}
		// 右为空,找到祖先里面孩子是父亲左的那个祖先
		else
		{
			Node* cur = _node;
			Node* parent = cur->_parent;
			while (parent && cur == parent->_right)
			{
				cur = parent;
				parent = cur->_parent;
			}
			_node = parent;
		}
		return *this;
	}
	//右⼦树->根结点->左⼦树
	Self operator--()
	{
		// --end()
		if (_node == nullptr)
		{
			//--end(),特殊处理,走到整棵树的最右节点
			Node* rightmost = _root;
			while (rightmost && rightmost->_right)
			{
				rightmost = rightmost->_right;
			}
			_node = rightmost;
		}
		else if (_node->_left)
		{
			//左不为空,找左子树的最右节点
			Node* rightmax = _node->_left;
			while (rightmax->_right)
			{
				rightmax = rightmax->_right;
			}
			_node = rightmax;
		}
		else
		{
			//左为空,找到祖先里面孩子是父亲右的那个祖先
			Node* cur = _node;
			Node* parent = cur->_parent;
			while (parent && cur == parent->_left)
			{
				cur = parent;
				parent = parent->_parent;
			}
			_node = parent;
		}
		return *this;
	}
	Ref operator*()
	{
		return _node->_data;
	}
	Ptr operator->()
	{
		return &_node->_data;
	}
	bool operator!=(const Self& s) const
	{
		return _node != s._node;
	}
	bool operator==(const Self& s) const
	{
		return _node == s._node;
	}
};
template<class K, class T,class KeyOfT>
class RBTree
{
	typedef RBTreeNode<T> Node;
public:
	typedef RBTreeIterator<T, T&, T*> Iterator;
	typedef RBTreeIterator<T, const T&, const T*> ConstIterator;
	Iterator Begin()
	{
		//最左节点
		Node* cur = _root;
		while (cur && cur->_left)
		{
			cur = cur->_left;
		}
		return Iterator(cur, _root);
	}
	Iterator End()
	{
		return Iterator(nullptr, _root);
	}
	ConstIterator Begin() const
	{
		//最左节点
		Node* cur = _root;
		while (cur && cur->_left)
		{
			cur = cur->_left;
		}
		return ConstIterator(cur, _root);
	}
	ConstIterator End() const
	{
		return ConstIterator(nullptr, _root);
	}
	pair<Iterator, bool> Insert(const T& data)
	{
		if (_root == nullptr)
		{
			_root = new Node(data);
			_root->_col = BLACK;
			return { Iterator(_root,_root),true };
		}
		KeyOfT kot;
		Node* parent = nullptr;
		Node* cur = _root;
		while (cur)
		{
			if (kot(data) > kot(cur->_data))
			{
				parent = cur;
				cur = cur->_right;
			}
			else if (kot(data) < kot(cur->_data))
			{
				parent = cur;
				cur = cur->_left;
			}
			else
			{
				return {Iterator(cur,_root),true};
			}
		}

		cur = new Node(data);
		Node* newnode = cur;
		cur->_col = RED;
		if (kot(data) > kot(parent->_data))
		{
			parent->_right = cur;
		}
		else
		{
			parent->_left = cur;
		}
		//链接父亲
		cur->_parent = parent;

		// 父亲是红色,出现连续的红色节点,需要处理
		while (parent && parent->_col == RED)
		{
			Node* grandfather = parent->_parent;
			if (parent == grandfather->_left)
			{
				//   g
				// p   u
				// 情况 1:uncle存在且为红 只需要变色 继续往上更新即可
				Node* uncle = grandfather->_right;
				if (uncle && uncle->_col == RED)
				{
					parent->_col = BLACK;
					uncle->_col = BLACK;
					grandfather->_col = RED;

					// 继续往上处理
					cur = grandfather;
					parent = cur->_parent;
				}
				// 情况 2:叔叔不存在,或者存在且为黑
				else
				{
					//  g
					// p u
					//c
					if (cur == parent->_left)
					{
						RotateR(grandfather);
						parent->_col = BLACK;
						grandfather->_col = RED;
					}

					//  g
					// p  u
					//  c
					else
					{
						RotateL(parent);
						RotateR(grandfather);
						cur->_col = BLACK;
						grandfather->_col = RED;
					}
					break;
				}

			}
			//parent == grandfather->_right
			else
			{    //   g
				// u   p
				Node* uncle = grandfather->_left;
				if (uncle && uncle->_col == RED)
				{
					parent->_col = BLACK;
					uncle->_col = BLACK;
					grandfather->_col = RED;

					// 继续往上处理
					cur = grandfather;
					parent = cur->_parent;
				}
				else
				{     //  g
					 // u  p
					//     c
					if (cur == parent->_right)
					{
						RotateL(grandfather);
						parent->_col = BLACK;
						grandfather->_col = RED;
					}
					//  g
					// u  p
					//   c
					else
					{
						RotateR(parent);
						RotateL(grandfather);
						cur->_col = BLACK;
						grandfather->_col = RED;
					}
					break;
				}
			}
		}

		_root->_col = BLACK;
		return {Iterator(newnode,_root),true};
	}
	void RotateR(Node* parent)
	{
		Node* subL = parent->_left;
		Node* subLR = subL->_right;

		parent->_left = subLR;
		if (subLR)
			subLR->_parent = parent;

		Node* pParent = parent->_parent;

		subL->_right = parent;
		parent->_parent = subL;

		if (parent == _root)
		{
			_root = subL;
			subL->_parent = nullptr;
		}
		else
		{
			if (pParent->_left == parent)
			{
				pParent->_left = subL;
			}
			else
			{
				pParent->_right = subL;
			}

			subL->_parent = pParent;
		}
	}

	void RotateL(Node* parent)
	{
		Node* subR = parent->_right;
		Node* subRL = subR->_left;
		parent->_right = subRL;
		if (subRL)
			subRL->_parent = parent;

		Node* parentParent = parent->_parent;
		subR->_left = parent;
		parent->_parent = subR;
		if (parentParent == nullptr)
		{
			_root = subR;
			subR->_parent = nullptr;
		}
		else
		{
			if (parent == parentParent->_left)
			{
				parentParent->_left = subR;
			}
			else
			{
				parentParent->_right = subR;
			}
			subR->_parent = parentParent;
		}
	}
	void InOrder()
	{
		_InOrder(_root);
		cout << endl;
	}

	int Height()
	{
		return _Height(_root);
	}

	int Size()
	{
		return _Size(_root);
	}

	Node* Find(const K& data)
	{
		Node* cur = _root;
		KeyOfT kot;
		while (cur)
		{
			if (kot(cur->_data) < kot(data))
			{
				cur = cur->_right;
			}
			else if (kot(cur->_data) > kot(data))
			{
				cur = cur->_left;
			}
			else
			{
				return cur;
			}
		}

		return nullptr;
	}

	bool IsBalance()
	{
		if (_root == nullptr)
			return true;

		if (_root->_col == RED)
			return false;

		// 参考值
		int refNum = 0;
		Node* cur = _root;
		while (cur)
		{
			if (cur->_col == BLACK)
			{
				++refNum;
			}
			cur = cur->_left;
		}

		return Check(_root, 0, refNum);
	}
private:
	bool Check(Node* root, int blackNum, const int refNum)
	{
		if (root == nullptr)
		{
			// 前序遍历走到空时,意味着一条路径走完了
			//cout << blackNum << endl;
			if (refNum != blackNum)
			{
				cout << "存在黑色结点的数量不相等的路径" << endl;
				return false;
			}
			return true;
		}

		// 检查孩子不太方便,因为孩子有两个,且不一定存在,反过来检查父亲就方便多了
		if (root->_col == RED && root->_parent->_col == RED)
		{
			cout << root->_kv.first << "存在连续的红色结点" << endl;
			return false;
		}

		if (root->_col == BLACK)
		{
			blackNum++;
		}

		return Check(root->_left, blackNum, refNum)
			&& Check(root->_right, blackNum, refNum);
	}

	void _InOrder(Node* root)
	{
		if (root == nullptr)
		{
			return;
		}

		_InOrder(root->_left);
		cout << root->_kv.first << ":" << root->_kv.second << endl;
		_InOrder(root->_right);
	}

	int _Height(Node* root)
	{
		if (root == nullptr)
			return 0;
		int leftHeight = _Height(root->_left);
		int rightHeight = _Height(root->_right);
		return leftHeight > rightHeight ? leftHeight + 1 : rightHeight + 1;
	}

	int _Size(Node* root)
	{
		if (root == nullptr)
			return 0;

		return _Size(root->_left) + _Size(root->_right) + 1;
	}
private:
	Node* _root = nullptr;
}; 

4.myset.h

#pragma once
#include "RBTree.h"

namespace sy
{
	template<class K>
	class set
	{
		struct SetKeyOfT
		{
			const K& operator()(const K& key)
			{
				return key;
			}
		};

	public:
		typedef typename RBTree<K, const K, SetKeyOfT>::Iterator iterator;
		typedef typename RBTree<K, const K, SetKeyOfT>::ConstIterator const_iterator;
		iterator begin()
		{
			return _t.Begin();
		}
		iterator end()
		{
			return _t.End();
		}
		const_iterator begin() const
		{
			return _t.Begin();
		}

		const_iterator end()  const
		{
			return _t.End();
		}
		pair<iterator, bool> insert(const K& key)
		{
			return _t.Insert(key);
		}
	private:
		RBTree<K, const K, SetKeyOfT> _t;

	};
}

5.mymap.h

#pragma once
#include "RBTree.h"

namespace sy
{
	template<class K,class V>
	class map
	{
		struct MapKeyOfT
		{
			const K& operator()(const pair<K,V>& kv)
			{
				return kv.first;
			}
		};

	public:
		typedef typename RBTree<K, pair<const K,V>, MapKeyOfT>::Iterator iterator;
		typedef typename RBTree<K, pair<const K,V>, MapKeyOfT>::ConstIterator const_iterator;
		iterator begin()
		{
			return _t.Begin();
		}
		iterator end()
		{
			return _t.End();
		}
		const_iterator begin() const
		{
			return _t.Begin();
		}

		const_iterator end()  const
		{
			return _t.End();
		}
		pair<iterator, bool> insert(const pair<K,V>& kv)
		{
			return _t.Insert(kv);
		}
		V& operator[](const K& key)
		{
			pair<iterator, bool> ret = insert({ key,V() });
			return ret.first->second;
		}
	private:
		RBTree<K, pair<const K,V>, MapKeyOfT> _t;

	};
}

Logo

有“AI”的1024 = 2048,欢迎大家加入2048 AI社区

更多推荐