DIY一个简易的信号发生器驱动板,主要是三角波和正弦波,方波。主板有两个通道能输出波形,

CH0由AD9833+MCP410+AD8051放大电路组成,理论可以生成0.1-12.5MHZ的频率信号,单电源振幅范围是1-9V。

CH1由MCU外设DAC生成的信号,和放大电路组成,DAC可以生成1-100khz的三角波,正弦波,方波,赋值0-3.3v, 可以用运算放大电路放大。

硬件:

  1. MCU :GD32F303CBT6
  2. DAC输出通道0 :AD9833+MCP41010+SPI
  3. DAC输出通道1:MCU外设DAC
  4. OLED
  5. 按键
  6. LED.

2.波形输出通道0,由AD9833+MCP410+AD8051运放组成。

电路图

AD9833和MCP41010都是SPI驱动,大多数教程是用的软件SPI,本次多增加了硬件SPI驱动方式。

软件SPI

#ifndef __GD_SPI_SOF_H_
#define __GD_SPI_SOF_H_


#include "gd32f30x.h"
#include "./gd_gpio/gd_gpio.h"

//软件模拟SPI

typedef struct 
{
    uint32_t gpio_periph;    
    uint32_t pin;
}SpiSofGpio;
typedef enum
{
    CPOL0_CPHA0,
    CPOL0_CPHA1,
    CPOL1_CPHA0,
    CPOL1_CPHA1,
}SpiSofClockPolarity;//时钟极性


typedef struct 
{
    SpiSofGpio sck;//引脚
    SpiSofGpio mosi;//引脚
    SpiSofClockPolarity clock_polarity;//时钟极性

}SpiSofInfo;

typedef enum
{
    SPI_SOF_ID0 = 0,
    SPI_SOF_ID_MAX
}SpiSofId;





void spi_sof_write_u8(SpiSofId id,uint8_t data);
void spi_sof_write_u16(SpiSofId id,uint16_t data);
void spi_sof_write_buff(SpiSofId id,uint8_t *buff,uint16_t len);

uint8_t spi_sof_clock_polarity_config(SpiSofId id  , SpiSofClockPolarity clockp);

void spi_sof_cs_set_enbale(uint32_t gpio_periph ,uint32_t pin,uint8_t enable);
void spi_sof_cs_init(uint32_t gpio_periph ,uint32_t pin);
uint8_t spi_sof_init(SpiSofId id );



#include "gd_spi_sof.h"
#include "./gd_dwt/gd_dwt.h"
#include "am_gpio_config.h"



#define SPI_SOF_GPIO_INIT(g,m,s,p) gd_gpio_config(g,m,s,p)
//#define SPI_SOF_CS_Write(g,p,x)   gpio_bit_write(g,p,x)
#define SPI_SOF_CLK_Write(g,p,x)  gpio_bit_write(g,p,x)
#define SPI_SOF_MOSI_Write(g,p,x) gpio_bit_write(g,p,x)


static SpiSofInfo spi_sof_buff[SPI_SOF_ID_MAX]={
{SPI_SOF0_SCK_GPIOx,SPI_SOF0_SCK_GPIOx_PINx,SPI_SOF0_MOSI_GPIOx,SPI_SOF0_MOSI_GPIOx_PINx,CPOL0_CPHA1},
};
		

static void spi_sof_delay(void)
{
    uint16_t n=0;

    for (n = 0; n < 1; n++);

}




static void spi_sof_cpol0cpha0_write_byte(SpiSofId id,uint8_t byte)
{
    uint8_t i=0;

    if(id >= SPI_SOF_ID_MAX ){return;}

     // 从高位到低位发送(SPI通常默认MSB先行)
     for ( i = 0; i < 8; i++) {
        SPI_SOF_CLK_Write(spi_sof_buff[id].sck.gpio_periph,spi_sof_buff[id].sck.pin,0);
        spi_sof_delay();  // 维持时钟低电平
        // 1. 准备数据(在时钟上升沿前设置好MOSI电平)
        if (byte & (0x80 >> i)) {  // 提取当前位(从bit7到bit0)
            SPI_SOF_MOSI_Write(spi_sof_buff[id].mosi.gpio_periph,spi_sof_buff[id].mosi.pin, 1);  // 输出高电平
        } else {
            SPI_SOF_MOSI_Write(spi_sof_buff[id].mosi.gpio_periph,spi_sof_buff[id].mosi.pin, 0);  // 输出高电平
        }
        spi_sof_delay(); // 确保数据稳定
        
        // 2. 产生时钟上升沿(从低到高),此时从机采样数据
        SPI_SOF_CLK_Write(spi_sof_buff[id].sck.gpio_periph,spi_sof_buff[id].sck.pin, 1);
        spi_sof_delay();  // 维持时钟高电平,保证采样完成
        
    }   
    SPI_SOF_CLK_Write(spi_sof_buff[id].sck.gpio_periph,spi_sof_buff[id].sck.pin,0);
}

static void spi_sof_cpol0cpha1_write_byte(SpiSofId id,uint8_t byte)
{
    uint8_t i=0;
    // 从高位到低位发送(MSB先行)
    SPI_SOF_CLK_Write(spi_sof_buff[id].sck.gpio_periph, spi_sof_buff[id].sck.pin, 0);
    spi_sof_delay();

    for ( i = 0; i < 8; i++) {
        SPI_SOF_CLK_Write(spi_sof_buff[id].sck.gpio_periph,spi_sof_buff[id].sck.pin, 1);
        spi_sof_delay();

        if (byte & (0x80 >> i)) {  // 提取当前位(从bit7到bit0)
            SPI_SOF_MOSI_Write(spi_sof_buff[id].mosi.gpio_periph,spi_sof_buff[id].mosi.pin, 1);   // 输出高电平
        } else {
            SPI_SOF_MOSI_Write(spi_sof_buff[id].mosi.gpio_periph,spi_sof_buff[id].mosi.pin, 0);   // 输出低电平
        }
        spi_sof_delay();
        
        // 3. 产生时钟下降沿(从高到低),此时从机采样数据
        SPI_SOF_CLK_Write(spi_sof_buff[id].sck.gpio_periph,spi_sof_buff[id].sck.pin, 0);
        spi_sof_delay();
    
    }
   // SPI_SOF_CLK_Write(spi_sof_buff[id].sck.gpio_periph,spi_sof_buff[id].sck.pin, 0);
}
static void spi_sof_cpol1cpha0_write_byte(SpiSofId id,uint8_t byte)
{
    uint8_t i=0;

    // 从高位到低位发送(MSB先行)
    for ( i = 0; i < 8; i++) {

        SPI_SOF_CLK_Write(spi_sof_buff[id].sck.gpio_periph,spi_sof_buff[id].sck.pin,1);
        spi_sof_delay();


        if (byte & (0x80 >> i)) {  // 提取当前位(从bit7到bit0)
            SPI_SOF_MOSI_Write(spi_sof_buff[id].mosi.gpio_periph,spi_sof_buff[id].mosi.pin, 1);   // 输出高电平
        } else {
            SPI_SOF_MOSI_Write(spi_sof_buff[id].mosi.gpio_periph,spi_sof_buff[id].mosi.pin, 0);   // 输出低电平
        }
        spi_sof_delay();  // 确保数据稳定
        
  
        SPI_SOF_CLK_Write(spi_sof_buff[id].sck.gpio_periph,spi_sof_buff[id].sck.pin, 0);
        spi_sof_delay();
        
    }
    
    // 发送完成后,确保时钟回到空闲高电平
    SPI_SOF_CLK_Write(spi_sof_buff[id].sck.gpio_periph,spi_sof_buff[id].sck.pin, 1);
}

static void spi_sof_cpol1cpha1_write_byte(SpiSofId id,uint8_t byte)
{
    uint8_t i=0;
    // 从高位到低位发送(MSB先行)
    for ( i = 0; i < 8; i++) {
        // 1. 产生时钟下降沿(从高到低)
        SPI_SOF_CLK_Write(spi_sof_buff[id].sck.gpio_periph,spi_sof_buff[id].sck.pin,0);
        spi_sof_delay();
        // 2. 准备数据(在下降沿前设置好MOSI电平)
        if (byte & (0x80 >> i)) {  // 提取当前位(从bit7到bit0)
            SPI_SOF_MOSI_Write(spi_sof_buff[id].mosi.gpio_periph,spi_sof_buff[id].mosi.pin, 1);   // 输出高电平
        } else {
            SPI_SOF_MOSI_Write(spi_sof_buff[id].mosi.gpio_periph,spi_sof_buff[id].mosi.pin, 0);   // 输出低电平
        }
        spi_sof_delay();
        
        // 3. 产生时钟上升沿(从低到高),为下一次采样做准备
        SPI_SOF_CLK_Write(spi_sof_buff[id].sck.gpio_periph,spi_sof_buff[id].sck.pin,1);
        spi_sof_delay();
    }
    
    // 发送完成后,确保时钟回到空闲高电平
    SPI_SOF_CLK_Write(spi_sof_buff[id].sck.gpio_periph,spi_sof_buff[id].sck.pin,1);
}


void spi_sof_write_u8(SpiSofId id,uint8_t data)
{
    SpiSofClockPolarity  clocktype;

    clocktype = spi_sof_buff[id].clock_polarity;

    switch (clocktype)
    {
        case CPOL0_CPHA0:
        spi_sof_cpol0cpha0_write_byte(id,data);
            break;
        case CPOL0_CPHA1:
        spi_sof_cpol0cpha1_write_byte(id,data);
            break;
        case CPOL1_CPHA0:
        spi_sof_cpol1cpha0_write_byte(id,data);
            break;
        case CPOL1_CPHA1:
        spi_sof_cpol1cpha1_write_byte(id,data);
            break;
    
    default:
        break;
    }

}

void spi_sof_write_u16(SpiSofId id,uint16_t data)
{
    spi_sof_write_u8(id,(uint8_t)(data >> 8));
    spi_sof_write_u8(id,(uint8_t)(data & 0xff));
    //printf("data=%x",data);
}

void spi_sof_write_buff(SpiSofId id,uint8_t *buff,uint16_t len)
{
    uint16_t i=0;

    for(i=0;i<len;i++)
    {
        spi_sof_write_u8(id,buff[i]);
    }
}


uint8_t spi_sof_clock_polarity_config(SpiSofId id  , SpiSofClockPolarity clockp)
{
    if(id >= SPI_SOF_ID_MAX ){
        return 0;}

        spi_sof_buff[id].clock_polarity = clockp;
        if(clockp == CPOL0_CPHA0 || clockp == CPOL0_CPHA1){
            SPI_SOF_CLK_Write(spi_sof_buff[id].sck.gpio_periph,spi_sof_buff[id].sck.pin,0);
        }else
        {
            SPI_SOF_CLK_Write(spi_sof_buff[id].sck.gpio_periph,spi_sof_buff[id].sck.pin,1);
        }

    return 1;
}


uint8_t spi_sof_init(SpiSofId id )
{
    if(id >= SPI_SOF_ID_MAX ){
        return 0;}

    SPI_SOF_GPIO_INIT(spi_sof_buff[id].sck.gpio_periph,
                        GPIO_MODE_OUT_PP ,
                        GPIO_OSPEED_50MHZ,
                        spi_sof_buff[id].sck.pin);

    SPI_SOF_GPIO_INIT(spi_sof_buff[id].mosi.gpio_periph,
        GPIO_MODE_OUT_PP ,
        GPIO_OSPEED_50MHZ,
        spi_sof_buff[id].mosi.pin);

    

    return 1;
}


void spi_sof_cs_init(uint32_t gpio_periph ,uint32_t pin)
{
   gd_gpio_config(gpio_periph,GPIO_MODE_OUT_PP,GPIO_OSPEED_50MHZ,pin);  
}

void spi_sof_cs_set_enbale(uint32_t gpio_periph ,uint32_t pin,uint8_t enable)
{
    if(enable){
        GD_SET_PIN_L(gpio_periph,pin);
    }else{
        GD_SET_PIN_H(gpio_periph,pin);
    }
}


硬件SPI配置

#ifndef __GD_SPI_H_
#define __GD_SPI_H_


#include "gd32f30x.h"


void gd_spi_init(uint32_t spi_periph ,uint8_t spi_remap_t);

void gd_spi_css_soft_gpio_init(uint32_t gpio_periph ,uint32_t pin);
void gd_spi_css_soft_set_enbale(uint32_t gpio_periph ,uint32_t pin,uint8_t enable);


#if 1
uint8_t gd_spi_transmit_u8buff(uint32_t spi_periph, uint8_t *pData, uint16_t Size, uint32_t Timeout);
//uint8_t gd_spi_transmit_u16buff(uint32_t spi_periph, uint16_t *pData, uint16_t Size, uint32_t Timeout);
uint8_t gd_spi_receive_u8buff(uint32_t spi_periph, uint8_t *pData, uint16_t Size, uint32_t Timeout);

uint8_t gd_spi_transmit_receive(uint32_t spi_periph, 
                              const uint8_t *tx_buf, 
                              uint8_t *rx_buf, 
                              uint16_t size, 
                              uint32_t Timeout);
#endif


#include "gd_spi.h"
#include "./gd_gpio/gd_gpio.h"
#include "./gd_system/gd_system.h"
#include "./gd_dwt/gd_dwt.h"
#include <stdio.h>


#define SPI_GET_TICK() gd_system_get_tick()
#define SPI_Delayus(s) DWT_DelayUS(s)

void gd_spi_css_soft_gpio_init(uint32_t gpio_periph ,uint32_t pin)
{
   gd_gpio_config(gpio_periph,GPIO_MODE_OUT_PP,GPIO_OSPEED_50MHZ,pin);  
}
void gd_spi_css_soft_set_enbale(uint32_t gpio_periph ,uint32_t pin,uint8_t enable)
{
    if(enable){
        GD_SET_PIN_L(gpio_periph,pin);
    }else{
        GD_SET_PIN_H(gpio_periph,pin);
    }
}

//默认spi引脚
static void gd_spi_gpio_config(uint32_t spi_periph)
{

    if(spi_periph == SPI0)
    {
        //SPI0 SCL PA5
        gd_gpio_config(GPIOA,GPIO_MODE_AF_PP,GPIO_OSPEED_50MHZ,GPIO_PIN_5);
        //SPI0 MOSI PA7
        gd_gpio_config(GPIOA,GPIO_MODE_AF_PP,GPIO_OSPEED_50MHZ,GPIO_PIN_7);
        //SPI0 MISO PA6
        gd_gpio_config(GPIOA,GPIO_MODE_IN_FLOATING,GPIO_OSPEED_50MHZ,GPIO_PIN_6);
    }else if(spi_periph == SPI1)
    {
        //SPI1 SCL PB13
        gd_gpio_config(GPIOB,GPIO_MODE_AF_PP,GPIO_OSPEED_50MHZ,GPIO_PIN_13);
        //SPI1 MOSI PB15
        gd_gpio_config(GPIOB,GPIO_MODE_AF_PP,GPIO_OSPEED_50MHZ,GPIO_PIN_15);
        //SPI1 MISO PB14
        gd_gpio_config(GPIOB,GPIO_MODE_IN_FLOATING,GPIO_OSPEED_50MHZ,GPIO_PIN_14);        
    }
    else if(spi_periph == SPI2)
    {
        //PB3,PB4特殊引脚。
        //gpio_pin_remap_config(GPIO_SWJ_SWDPENABLE_REMAP,ENABLE);
        //SPI2 SCL PB3
        gd_gpio_config(GPIOB,GPIO_MODE_AF_PP,GPIO_OSPEED_50MHZ,GPIO_PIN_3);
        //SPI2 MOSI PB5
        gd_gpio_config(GPIOB,GPIO_MODE_AF_PP,GPIO_OSPEED_50MHZ,GPIO_PIN_5);
        //SPI2 MISO PB4
        gd_gpio_config(GPIOB,GPIO_MODE_IN_FLOATING,GPIO_OSPEED_50MHZ,GPIO_PIN_4);         
    }
    else
    {
        return ;
    }
}
//复用spi引脚初始化
static void gd_spi_remap_gpio_config(uint32_t spi_periph)
{

    if(spi_periph == SPI0)
    {
         gpio_pin_remap_config(GPIO_SPI0_REMAP, ENABLE);//SPI0引脚重映射
        //SPI0 SCL PB3
        gd_gpio_config(GPIOB,GPIO_MODE_AF_PP,GPIO_OSPEED_50MHZ,GPIO_PIN_3);
        //SPI0 MOSI PB5
        gd_gpio_config(GPIOB,GPIO_MODE_AF_PP,GPIO_OSPEED_50MHZ,GPIO_PIN_5);
        //SPI0 MISO PB4
        gd_gpio_config(GPIOB,GPIO_MODE_IN_FLOATING,GPIO_OSPEED_50MHZ,GPIO_PIN_4);
    }else if(spi_periph == SPI1)
    {
        return;
    }
    else if(spi_periph == SPI2)
    {
         gpio_pin_remap_config(GPIO_SPI2_REMAP, ENABLE);
        //PB3,PB4特殊引脚。
        //gpio_pin_remap_config(GPIO_SWJ_SWDPENABLE_REMAP,ENABLE);
        //SPI2 SCL PC10
        gd_gpio_config(GPIOC,GPIO_MODE_AF_PP,GPIO_OSPEED_50MHZ,GPIO_PIN_10);
        //SPI2 MOSI PC12
        gd_gpio_config(GPIOC,GPIO_MODE_AF_PP,GPIO_OSPEED_50MHZ,GPIO_PIN_12);
        //SPI2 MISO PC11
        gd_gpio_config(GPIOC,GPIO_MODE_IN_FLOATING,GPIO_OSPEED_50MHZ,GPIO_PIN_11);         
    }
    else
    {
        return ;
    }
}


void gd_spi_init(uint32_t spi_periph ,uint8_t spi_remap_t)
{
    spi_parameter_struct spi_init_struct;

    rcu_periph_clock_enable(RCU_AF);

    if(spi_remap_t == 0){
        gd_spi_gpio_config(spi_periph);
    }
    else
    {
        if(spi_periph == SPI1){
            return ;
        }
        gd_spi_remap_gpio_config(spi_periph);
    }

    if(spi_periph == SPI0){
        rcu_periph_clock_enable(RCU_SPI0);
    }else if(spi_periph == SPI1)
    {
        rcu_periph_clock_enable(RCU_SPI1);
    }else if(spi_periph == SPI2)
    {
        rcu_periph_clock_enable(RCU_SPI2);
    }else{return;}
       
    spi_init_struct.trans_mode           = SPI_TRANSMODE_FULLDUPLEX;//传输模式 全双工
    spi_init_struct.device_mode          = SPI_MASTER;//设备模式  主机模式
    spi_init_struct.frame_size           = SPI_FRAMESIZE_8BIT;//8位字节 
    spi_init_struct.clock_polarity_phase = SPI_CK_PL_HIGH_PH_1EDGE;//时钟极性和相位
    spi_init_struct.nss                  = SPI_NSS_SOFT;//片选模式 软件片选
    spi_init_struct.prescale             = SPI_PSC_256;//分配系数
    spi_init_struct.endian               = SPI_ENDIAN_MSB;//字节顺序  大端
    spi_init(spi_periph, &spi_init_struct);
    
    spi_enable(spi_periph);
}


//轮询堵塞的方式
#if 1
uint8_t gd_spi_transmit_u8buff(uint32_t spi_periph, uint8_t *pData, uint16_t Size, uint32_t Timeout)
{
    uint8_t i;
    uint32_t tickstart;
    uint32_t tick_cnt;

    if(pData == NULL || Size == 0){return 0;}
		

    tickstart = SPI_GET_TICK();

   for(i=0;i < Size; i++)
   {
    
        while (RESET == spi_i2s_flag_get(spi_periph, SPI_FLAG_TBE)) {
             if((SPI_GET_TICK() - tickstart) > Timeout){
                return 0;
             }
        }
        spi_i2s_data_transmit(spi_periph, pData[i]);
 
        if(SPI_GET_TICK() < tickstart) {
            tick_cnt =  (0xFFFFFFFF - tickstart) + SPI_GET_TICK() + 1;
        }
        else{
            tick_cnt = SPI_GET_TICK() - tickstart;
        }
        if(tick_cnt > Timeout){return 0;}
   }
        // 等待最后一个字节完全发送完成
    while (spi_i2s_flag_get(spi_periph, SPI_FLAG_TRANS)) {
        if((SPI_GET_TICK() - tickstart) > Timeout){
            return 0;  // 超时错误
        }
    }

   return 1;
}
uint8_t gd_spi_transmit_u16buff(uint32_t spi_periph, uint16_t *pData, uint16_t Size, uint32_t Timeout)
{
    uint8_t i;
    uint32_t tickstart;
    uint32_t tick_cnt;

    if(pData == NULL || Size == 0){return 0;}

    tickstart = SPI_GET_TICK();

   for(i=0;i < Size; i++)
   {
    
        while (RESET == spi_i2s_flag_get(spi_periph, SPI_FLAG_TBE)) {
             if((SPI_GET_TICK() - tickstart) > Timeout){
                return 0;
             }
        }
        spi_i2s_data_transmit(spi_periph, pData[i]);
 
        if(SPI_GET_TICK() < tickstart) {
            tick_cnt =  (0xFFFFFFFF - tickstart) + SPI_GET_TICK() + 1;
        }
        else{
            tick_cnt = SPI_GET_TICK() - tickstart;
        }
        if(tick_cnt > Timeout){return 0;}
   }
        // 等待最后一个字节完全发送完成
    while (spi_i2s_flag_get(spi_periph, SPI_FLAG_TRANS)) {
        if((SPI_GET_TICK() - tickstart) > Timeout){
            return 0;  // 超时错误
        }
    }

   return 1;
}


uint8_t gd_spi_receive_u8buff(uint32_t spi_periph, uint8_t *pData, uint16_t Size, uint32_t Timeout)
{
    uint8_t i;
    uint32_t tickstart;
    uint32_t tick_cnt;

    if(pData == NULL || Size == 0){return 0;}
     tickstart = SPI_GET_TICK();

    for(i =0; i < Size; i++){
        while (RESET == spi_i2s_flag_get(spi_periph, SPI_FLAG_RBNE)) {
            if((SPI_GET_TICK() - tickstart) > Timeout){
                return 0;
            }
        }

        if(SPI_GET_TICK() < tickstart) {
            tick_cnt =  (0xFFFFFFFF - tickstart) + SPI_GET_TICK() + 1;
        }
        else{
            tick_cnt = SPI_GET_TICK() - tickstart;
            
        }
        if(tick_cnt > Timeout){return 0;}

        pData[i] =  (uint8_t)spi_i2s_data_receive(spi_periph);
    }
   

    return 1;
}


/**
 * @brief SPI全双工通信函数,同时发送和接收数据
 * @param spi_periph: SPI外设 (SPI0, SPI1, SPI2等)
 * @param tx_buf: 发送数据缓冲区指针,NULL表示只接收不发送
 * @param rx_buf: 接收数据缓冲区指针,NULL表示只发送不接收
 * @param size: 要发送/接收的数据长度
 * @param timeout: 超时时间(单位:滴答数)
 * @return 0: 超时错误, 1: 成功, 0xFF: 参数错误
 */
uint8_t gd_spi_transmit_receive(uint32_t spi_periph, 
                              const uint8_t *tx_buf, 
                              uint8_t *rx_buf, 
                              uint16_t size, 
                              uint32_t Timeout)
{
    uint16_t i;
    uint32_t tickstart;
    uint16_t tx_data, rx_data;
    uint32_t tick_cnt;

    // 参数合法性检查
    if (size == 0 || (tx_buf == NULL && rx_buf == NULL)) {
        return 0; // 参数错误
    }

    tickstart = SPI_GET_TICK();

    for (i = 0; i < size; i++) {

        if(SPI_GET_TICK() < tickstart) {
            tick_cnt =  (0xFFFFFFFF - tickstart) + SPI_GET_TICK() + 1;
        }
        else{
            tick_cnt = SPI_GET_TICK() - tickstart;
            
        }
        if(tick_cnt > Timeout){return 0;}

        // 准备要发送的数据,如果发送缓冲区为空则发送0xFF
        tx_data = (tx_buf != NULL) ? tx_buf[i] : 0xFF;

        // 等待发送缓冲区为空
        while (spi_i2s_flag_get(spi_periph, SPI_FLAG_TBE) == RESET) {
            if ((SPI_GET_TICK() - tickstart) > Timeout) {
                return 0; // 超时错误
            }
        }
        // 发送数据
        spi_i2s_data_transmit(spi_periph, tx_data);

        // 等待接收缓冲区有数据
        while (spi_i2s_flag_get(spi_periph, SPI_FLAG_RBNE) == RESET) {
            if ((SPI_GET_TICK() - tickstart) > Timeout) {
                return 0; // 超时错误
            }
        }
        // 读取接收的数据
        rx_data = spi_i2s_data_receive(spi_periph);

        // 如果接收缓冲区不为空,则存储接收的数据
        if (rx_buf != NULL) {
            rx_buf[i] = (uint8_t)rx_data;
        }
    }

    return 1; // 操作成功
}

#endif



软件SPI和硬件SPI,使用软件SPI的好处是使用和移植简单,随便的单片机换一下IO引脚就能用,硬件的话还需要根据手册来配置。

关于AD9833驱动的一些驱动注意事项。

我使用的晶振是25MHZ,所以AD9833输出的频率最大12.5M.VCC用的3.3V.单电源,

1.那么输出的正弦波和三角波的最大电压是0.6V,但是我用示波器测得是0.64V左右。

2.输出方波时是VCC的电压。

3.SPI的配置需要正确,时钟频率不需要太高,1M就够了,时钟极性 CPOL=1, CPHA=0,不然通讯不了。

AD9833驱动代码。

#ifndef __AD9833_H
#define __AD9833_H

#include "./gd_spi/gd_spi.h"

typedef enum
{
    DAC_SINE_TYPE,//正弦波
    DAC_TRIANGLE_TYPE,//三角波
    DAC_PWM_MSB_2_TYPE, //方波MSB/2
    DAC_PWM_MSB_TYPE//方波MSB
}AD9833OutModeType;

typedef enum
{
    FREQ0,
    FREQ1,
}AD9833_FreqType;

typedef enum
{
    PHASE0,
    PHASE1,
}AD9833_PhaseType;

#define AD9833_BIT(x)             ((uint32_t)((uint32_t)0x01U<<(x)))
#define AD9833_SET_BIT(data, bit)  ((data) |= (bit))  
#define AD9833_CLEAR_BIT(data, bit)  ((data) &= ~(bit))


/* 寄存器 */
 
#define AD9833_REG_CMD		    (0 << 14)// 0000 0000 0000 0000 寄存器即将更新
#define AD9833_REG_FREQ0_CMD	(1 << 14)// 0100 0000 0000 0000 频率寄存器0
#define AD9833_REG_FREQ1_CMD	(2 << 14)// 1000 0000 0000 0000 频率寄存器0
#define AD9833_REG_PHASE0_CMD	(6 << 13)// 1100 0000 0000 0000 写入相位寄存器0
#define AD9833_REG_PHASE1_CMD	(7 << 13)// 1110 0000 0000 0000 写入相位寄存器1



#define AD9833_B28				AD9833_BIT(13)
#define AD9833_HLB				AD9833_BIT(12)
#define AD9833_FSELECT			AD9833_BIT(11)
#define AD9833_PSELECT			AD9833_BIT(10)
#define AD9833_RESERVED_D9	    AD9833_BIT(9)//清零
#define AD9833_RESET			AD9833_BIT(8) //复位
#define AD9833_SLEEP1			AD9833_BIT(7)
#define AD9833_SLEEP12		    AD9833_BIT(6)
#define AD9833_OPBITEN		    AD9833_BIT(5)//
#define AD9833_RESERVED_D4		AD9833_BIT(4) //清零
#define AD9833_DIV2				AD9833_BIT(3)
#define AD9833_RESERVED_D2		AD9833_BIT(2) //清零
#define AD9833_MODE				AD9833_BIT(1)
#define AD9833_RESERVED_D0		AD9833_BIT(0)////清零






#define F_MCLK_HZ 25000000 //主频25M
#define OUT_MAX_FREQ_HZ  F_MCLK_HZ/2  //输出最大频率为时钟的一半
#define AD9833_Ki 268435456 //分辨率28位 2的28次方

#define AD9833_OUT_TRIANGLE_SINE_AMPLITUDE_MAX 630//三角波和弦波是0.64V
#define AD9833_OUT_PWM_AMPLITUDE_MAX 3300// pwm 波3.3v

void ad9833_init(void);

void ad9833_reset(void);
void ad9833_config_freq(AD9833_FreqType type,uint32_t freq);
void ad9833_config_phase(AD9833_PhaseType type,uint16_t phase_val);

void ad9833_config_mode(AD9833_FreqType freqx,AD9833_PhaseType phasex,AD9833OutModeType type);


#include "ad9833.h"
#include "./gd_gpio/gd_gpio.h"
#include "am_gpio_config.h"
#include "./gd_dwt/gd_dwt.h"
#include "./gd_spi/gd_spi_sof.h"


typedef struct 
{
    uint32_t gpio_periph;    
    uint32_t pin;
}Ad9833CsGpio;


#define AD9833_SPIx SPI1
#define AD9833_Dealy_ms(x) DWT_DelayMS(x)



static Ad9833CsGpio ad9833_cs_gpio={AD9833_CS_GPIOx,AD9833_CS_GPIOx_PINx};


static void ad9833_cs_set_enable(uint8_t enable)
{
    if(enable)
        GD_SET_PIN_L(ad9833_cs_gpio.gpio_periph,ad9833_cs_gpio.pin);
    else
        GD_SET_PIN_H(ad9833_cs_gpio.gpio_periph,ad9833_cs_gpio.pin);
}



static void ad9833_write_data(uint16_t data)
{
    uint8_t txbuff[2];
    txbuff[0] = (uint8_t)(data >> 8);
    txbuff[1] = (uint8_t)(data&0xff);


    ad9833_cs_set_enable(1);
    //gd_spi_transmit_u8buff(SPI1,txbuff,2,5);
    spi_sof_write_u16(SPI_SOF_ID0,data);
    ad9833_cs_set_enable(0);
}

void ad9833_WaveSeting(double Freq,unsigned int Freq_SFR,unsigned int WaveMode,unsigned int Phase )
{

		int frequence_LSB,frequence_MSB,Phs_data;
		double   frequence_mid,frequence_DATA;
		long int frequence_hex;

		/*********************************计算频率的16进制值***********************************/
		frequence_mid=268435456/25;//适合25M晶振
		//如果时钟频率不为25MHZ,修改该处的频率值,单位MHz ,AD9833最大支持25MHz
		frequence_DATA=Freq;
		frequence_DATA=frequence_DATA/1000000;
		frequence_DATA=frequence_DATA*frequence_mid;
		frequence_hex=frequence_DATA;  //这个frequence_hex的值是32位的一个很大的数字,需要拆分成两个14位进行处理;
		frequence_LSB=frequence_hex; //frequence_hex低16位送给frequence_LSB
		frequence_LSB=frequence_LSB&0x3fff;//去除最高两位,16位数换去掉高位后变成了14位
		frequence_MSB=frequence_hex>>14; //frequence_hex高16位送给frequence_HSB
		frequence_MSB=frequence_MSB&0x3fff;//去除最高两位,16位数换去掉高位后变成了14位

		Phs_data=Phase|0xC000;	//相位值
		ad9833_write_data(0x0100); //复位AD9833,即RESET位为1
		ad9833_write_data(0x2100); //选择数据一次写入,B28位和RESET位为1

		if(Freq_SFR==0)				  //把数据设置到设置频率寄存器0
		{
		 	frequence_LSB=frequence_LSB|0x4000;
		 	frequence_MSB=frequence_MSB|0x4000;
			 //使用频率寄存器0输出波形
             ad9833_write_data(frequence_LSB); //L14,选择频率寄存器0的低14位数据输入
             ad9833_write_data(frequence_MSB); //H14 频率寄存器的高14位数据输入
             ad9833_write_data(Phs_data);	//设置相位
			//AD9833_Write(0x2000); /**设置FSELECT位为0,芯片进入工作状态,频率寄存器0输出波形**/
	    }
		if(Freq_SFR==1)				//把数据设置到设置频率寄存器1
		{
			 frequence_LSB=frequence_LSB|0x8000;
			 frequence_MSB=frequence_MSB|0x8000;
			//使用频率寄存器1输出波形
			ad9833_write_data(frequence_LSB); //L14,选择频率寄存器1的低14位输入
			ad9833_write_data(frequence_MSB); //H14 频率寄存器1为
			ad9833_write_data(Phs_data);	//设置相位
			//AD9833_Write(0x2800); /**设置FSELECT位为0,设置FSELECT位为1,即使用频率寄存器1的值,芯片进入工作状态,频率寄存器1输出波形**/
		}

		if(WaveMode==0) //输出三角波波形
        ad9833_write_data(0x2002); 
		if(WaveMode==2)	//输出方波波形
        ad9833_write_data(0x2028); 
		if(WaveMode==1)	//输出正弦波形
        ad9833_write_data(0x2000); 

}



#if 1

void ad9833_reset(void)
{
    uint16_t txdata = 0;

    txdata |= AD9833_REG_CMD ;
    AD9833_SET_BIT(txdata,AD9833_RESET);
    printf("reset=%x\r\n",txdata);
    ad9833_write_data(txdata);
}


void ad9833_config_mode(AD9833_FreqType freqx,AD9833_PhaseType phasex,AD9833OutModeType type)
{
    uint16_t txdata = 0; 

    txdata |= AD9833_REG_CMD ;

    if(type == DAC_SINE_TYPE){
        AD9833_CLEAR_BIT(txdata,AD9833_OPBITEN);
        AD9833_CLEAR_BIT(txdata,AD9833_MODE);
    }
    else if(type == DAC_TRIANGLE_TYPE)
    {
        AD9833_CLEAR_BIT(txdata,AD9833_OPBITEN);
        AD9833_SET_BIT(txdata,AD9833_MODE);
    }else if(type == DAC_PWM_MSB_2_TYPE)
    {
        AD9833_SET_BIT(txdata,AD9833_OPBITEN);
        AD9833_CLEAR_BIT(txdata,AD9833_MODE);
        AD9833_CLEAR_BIT(txdata,AD9833_DIV2);
    }
    else if(type == DAC_PWM_MSB_TYPE)
    {
        AD9833_SET_BIT(txdata,AD9833_OPBITEN);
        AD9833_CLEAR_BIT(txdata,AD9833_MODE);
        AD9833_SET_BIT(txdata,AD9833_DIV2);
    }
    else 
    {
        return ;
    }

    if(freqx == FREQ0){
        AD9833_CLEAR_BIT(txdata,AD9833_FSELECT);
    }
    else 
    {
        AD9833_SET_BIT(txdata,AD9833_FSELECT);
    }
    if(phasex == PHASE0){
        AD9833_CLEAR_BIT(txdata,AD9833_PSELECT);
    }
    else 
    {
        AD9833_SET_BIT(txdata,AD9833_PSELECT);
    }

    ad9833_write_data(txdata);
   // printf("mode=%x\r\n",txdata);
}


void ad9833_config_freq(AD9833_FreqType type,uint32_t freq)
{
    uint16_t freqcmd,lsb,msb;
    uint16_t txdata =0 ;
    uint32_t mfreq;
    uint32_t write_28b;

    if(type == FREQ0){
        freqcmd = AD9833_REG_FREQ0_CMD;
    }else{
        freqcmd = AD9833_REG_FREQ1_CMD;
    }

    if(freq > OUT_MAX_FREQ_HZ)
    {
        mfreq = OUT_MAX_FREQ_HZ ;
    }else {
        mfreq = freq;
    }

    write_28b = (uint32_t)(((double)AD9833_Ki * mfreq / F_MCLK_HZ) + 0.5);

    lsb = (uint16_t)(write_28b & 0x3fff);
    msb = (uint16_t)(write_28b >>14 );

    txdata = 0x0000;
    txdata |= AD9833_REG_CMD ;
    AD9833_SET_BIT(txdata,AD9833_B28);
    AD9833_SET_BIT(txdata,AD9833_RESET);
    ad9833_write_data(txdata);//准备更新寄存器
    //printf("cmd=%x\r\n",txdata);

    txdata = 0x0000;
    txdata |= (freqcmd |lsb);
    ad9833_write_data(txdata);//写入频率寄存器0的LSB
    //printf("lsb=%x\r\n",txdata);
    txdata = 0x0000;
    txdata |= (freqcmd | msb);
    ad9833_write_data(txdata);//写入频率寄存器0的MSB
    //printf("msb=%x\r\n",txdata)
    
}

void ad9833_config_phase(AD9833_PhaseType type,uint16_t phase_val)
{
    uint16_t phase_cmd;
    uint16_t txdata;

    if(type == PHASE0){
        phase_cmd = AD9833_REG_PHASE0_CMD;
    }else {
        phase_cmd = AD9833_REG_PHASE1_CMD;
    }
   
    txdata = (phase_cmd|phase_val);

    ad9833_write_data(txdata);

}



#endif




void ad9833_init(void)
{

    spi_sof_cs_init(ad9833_cs_gpio.gpio_periph, ad9833_cs_gpio.pin); 
    spi_sof_cs_set_enbale(ad9833_cs_gpio.gpio_periph, ad9833_cs_gpio.pin,0);
    ad9833_reset();
    ad9833_config_freq(FREQ0,1000000);
    ad9833_config_freq(FREQ1,5000);
    ad9833_config_phase(PHASE0,0);
    ad9833_config_phase(PHASE1,0);
    ad9833_config_mode(FREQ0,PHASE0,DAC_PWM_MSB_TYPE);

}

上面的代码是AD9833的封装,只要你的SPI没问题,可以直接使用

static void ad9833_write_data(uint16_t data)
{
    uint8_t txbuff[2];
    txbuff[0] = (uint8_t)(data >> 8);
    txbuff[1] = (uint8_t)(data&0xff);


    ad9833_cs_set_enable(1);
    //gd_spi_transmit_u8buff(SPI1,txbuff,2,5);
    spi_sof_write_u16(SPI_SOF_ID0,data);
    ad9833_cs_set_enable(0);
}

这是SPI写入2个字节的,软件SPI用spi_sof_write_u16(SPI_SOF_ID0,data);

硬件SPI用gd_spi_transmit_u8buff(SPI1,txbuff,2,5);

//---------------------------------------------------------------------------------------

关于MCP41010是一个数字电位器,阻值是0-10K,抽头数是256,也就是分辨率。电阻分辨率最低档能调到40Ω,实际做不到40Ω,

MCU41010电位器主要是形成电阻分压电路,把AD9833出来的振幅衰减,MCU41010电位器当上管R1,下管R2采用1K.也就是说可以衰减的范围是0.9-0.09。AD9833正弦波和方波的信号是振幅是0-0.6V,理论上,通过修改MCP41010的阻值,可以输出的电压0.054-0.54V。MCU41010可以调节256个档位调节输出电压。在经过过后记的同比例运放,输出一个范围比较广的振幅了。

但是MCP41010的精度太低,还有的就是和信号的频率有关,会极大的影响电位器的阻值。需要软件校准。

MCP采用的也是SPI通讯,极性和AD9833的一样就行了。

#ifndef __MCP41010_H
#define __MCP41010_H

#include "./gd_spi/gd_spi.h"


typedef struct 
{
    uint32_t gpio_periph;    
    uint32_t pin;
}Mcp41010CsGpio;






#define MCP41010_WRITE_DATA_CMD   0x10        
#define MCP41010_SHUTOWN_CMD      0x20 
#define MCP41010_POTENTIOMETER_0  0x01
#define MCP41010_POTENTIOMETER_1  0x02

#define MCP41010_SizeR   10300//Ω  总电阻
#define MCP41010_SizeD   256-1 //触点,抽头

void mcp41010_set_RAD(uint8_t data);
void mcp41010_set_RA(uint32_t R);
void mcp41010_init(void);

#include "mcp41010.h"
#include "am_gpio_config.h"
#include "./gd_gpio/gd_gpio.h"
#include "./gd_dwt/gd_dwt.h"
#include "./gd_spi/gd_spi_sof.h"

#define MCP41010_SPIx SPI1
#define MCP41010_Dealy_us(x) DWT_DelayUS(x)

static Mcp41010CsGpio mcp41010_cs_gpio={MCP41010_CS_GPIOx,MCP41010_CS_GPIOx_PINx};


static void mcp41010_cs_set_enable(uint8_t enable)
{
    if(enable)
        GD_SET_PIN_L(mcp41010_cs_gpio.gpio_periph,mcp41010_cs_gpio.pin);
    else
        GD_SET_PIN_H(mcp41010_cs_gpio.gpio_periph,mcp41010_cs_gpio.pin);
}



static void mcp41010_write_cmd(uint8_t cmd ,uint8_t data)
{
    uint8_t txbuff[2];
    uint16_t txdata;

    txbuff[0] = cmd;
    txbuff[1] = data;

    txdata = ((cmd<<8) | data);
    mcp41010_cs_set_enable(1);
    //gd_spi_transmit_u8buff(MCP41010_SPIx,txbuff,2,10);
    spi_sof_write_u16(SPI_SOF_ID0,txdata);

    mcp41010_cs_set_enable(0);
}


void mcp41010_set_RAD(uint8_t data)
{
    if(data > MCP41010_SizeD){
        data = MCP41010_SizeD;
    }

    data = 255-data;
    mcp41010_write_cmd(MCP41010_WRITE_DATA_CMD|MCP41010_POTENTIOMETER_0,data); 
}


void mcp41010_set_RA(uint32_t R)
{
    uint8_t D;

    if(R > MCP41010_SizeR){
        R = MCP41010_SizeR;
    }

    D = (256 - (256*R)/MCP41010_SizeR);


    if(D > 255){D = 255;}
    if(D < 0){D = 0;}

    printf("mcp D=%d\r\n",D);
    mcp41010_write_cmd(MCP41010_WRITE_DATA_CMD|MCP41010_POTENTIOMETER_0,D);
}





void mcp41010_init(void)
{
    gd_gpio_config(mcp41010_cs_gpio.gpio_periph,\
                    GPIO_MODE_OUT_PP,\
                    GPIO_OSPEED_50MHZ,\
                    mcp41010_cs_gpio.pin); 

    mcp41010_cs_set_enable(0);
}






同向比例运放我放大了19倍

//====================================================================

进一步封装输出的信号。

DacChannelInfo dac_outchannel_info[DAC_OUT_CHANNEL_MAX]=
{
    {
        .out_state = DAC_OFF,
        .out_gain = 19,
        .out_type = PWM_TYPE,
        .out_freq = 100,
        .out_amplitude = 3300,
    },
    {
        .out_state = DAC_OFF,
        .out_gain = 3,
        .out_type = PWM_TYPE,
        .out_freq = 100,
        .out_amplitude = 3300,
    },

};




void ad9833_dac_out_wave(DacOutState state)
{
    DacOutType type;
    uint32_t freq,amplitude;
    uint32_t val_mv;
    uint32_t R1,R2;

    R2 = 1000;//分压电阻1K  

    dac_outchannel_info[AD9833_OUT_DAC].out_state = state;
    
    if(state == DAC_ON)
    {
        type =  dac_outchannel_info[AD9833_OUT_DAC].out_type;
        freq = dac_outchannel_info[AD9833_OUT_DAC].out_freq;
        amplitude =  dac_outchannel_info[AD9833_OUT_DAC].out_amplitude; 
        val_mv = amplitude/dac_outchannel_info[AD9833_OUT_DAC].out_gain;

        if(type == PWM_TYPE){
            R1 = ((R2*(AD9833_OUT_PWM_AMPLITUDE_MAX - val_mv)) / val_mv);
            mcp41010_set_RA(R1);     
        }
        else
        {
            R1 = (R2*(AD9833_OUT_TRIANGLE_SINE_AMPLITUDE_MAX - val_mv) / val_mv);
            mcp41010_set_RA(R1);
        }

        ad9833_config_freq(FREQ0,freq);
        ad9833_config_phase(PHASE0,0);

        printf("ad9833 freq=%d,val_mv=%d,R1=%d\r\n",freq,val_mv,R1);

        if(type == TRIANGLE_TYPE){
            ad9833_config_mode(FREQ0,PHASE0,DAC_TRIANGLE_TYPE); 
        }
        else if(type == SINE_TYPE){
            ad9833_config_mode(FREQ0,PHASE0,DAC_SINE_TYPE); 
        }else if(type == PWM_TYPE){
            //pwm波时是3.2V

             ad9833_config_mode(FREQ0,PHASE0,DAC_PWM_MSB_TYPE); 
        }else{
            ad9833_reset();
        }
    }
    else
    {
        ad9833_reset();
    }

}
typedef enum
{
    AD9833_OUT_DAC,
    MCU_OUT_DAC,
    DAC_OUT_CHANNEL_MAX
}DacId;

typedef enum
{
    TRIANGLE_TYPE,//三角
    SINE_TYPE,//正弦波
    PWM_TYPE,//方波
    LISF_TYPE, //噪声波
    STRAIGHT_TYPE,//直流
}DacOutType;

typedef enum
{
    DAC_OFF,
    DAC_ON
}DacOutState;


typedef struct 
{
    DacOutState out_state;

    float out_gain;//增益
    DacOutType out_type;//类型
    uint32_t out_freq;  //频率
    uint32_t out_amplitude;//振幅
}DacChannelInfo;

        .out_type = PWM_TYPE,
        .out_freq = 100,
        .out_amplitude = 3300,

修改需要输出的参数就可以,最主要的还是输出电压方面的设置。

例如,我需要输出的一个1K,9V的正弦波。

设置AD9833输出正弦波类型,频率是1khz,前面有AD9833驱动有,直接配置就好了,此时输出电压最大是0.6V-0.64V。想要输出到9V的信号,就需要把信号AD9833的信号先衰减到合适的值,然后在经过比例运放电路放大。比例运放是固定的,比如我的19倍。

val_mv = 9V/19=0.47V

 R1 = (R2*(AD9833_OUT_TRIANGLE_SINE_AMPLITUDE_MAX - val_mv) / val_mv);

mcp41010_set_RA(R1);

val_mv衰减的信号电压。然后通过串联分压电阻的公式,MCP的电阻要设置 R1=R2(V1-V2)/V1.

R1=(1K(0.64v-0.47V )/0.47V )=360R

MCP410的电阻需要设置到360Ω时,最终才能输出到9V,因为MCP41010的精度太差,设置不到精准的阻值,所以有误差。

AD9833输出信号波形基本完成了。

用示波器看一下输出的波形

电压误差还是有点大的,如果需要精度更高的话,需要用软件补偿,把MCP41010的阻值设置的更精准一些,再试一下2k的正弦波,振幅是0-3V。

目前是幅值越小,电压就越准确。

//========================================================================

二、使用GD32F303自身的DAC输出波形,主要用的模式是DAC+DMA+定时器的方式。

自带的DAC频率适合频率低的时候,比如波形需要越平滑,那么就需要更多的点。这也导致了频率不能太高,不然一个周期的点数不够,就会不平滑。

配置代码如下:

#ifndef _GD_DAC_H
#define _GD_DAC_H


#include "gd32f30x.h"


//DAC_OUT0 
//DAC_OUT1

//直流dac
void gd_dac_convert_init(uint8_t dac_out);
void gd_dac_dma_timer_init(uint8_t dac_out,uint32_t timer_periph,uint16_t *txbuff,uint16_t size);

//定时器LFSR噪声
void gd_dac_wave_lfsr_init(uint8_t dac_out ,uint16_t value ,uint32_t  unmask_bits ,uint32_t timer_periph);
//定时器三角波
void gd_dac_wave_triangle_init(uint8_t dac_out ,uint16_t value ,uint32_t  amplitude,uint32_t timer_periph);
//输出指定dac电压
void gd_dac_set_convert_value(uint8_t dac_out,uint16_t data);

#endif 
#include "gd_dac.h"
#include "./gd_gpio/gd_gpio.h"


#define DAC0_R8DH_ADDRESS    (0x40007410)
#define DAC0_R12DH_ADDRESS    (0x40007408)

static void gd_dac_out_gpio_config(uint8_t dac_out)
{
    if(dac_out == DAC_OUT0){
        gd_gpio_config(GPIOC, GPIO_MODE_AIN, GPIO_OSPEED_50MHZ,GPIO_PIN_4);
    }else if(dac_out == DAC_OUT1){
        gd_gpio_config(GPIOC, GPIO_MODE_AIN, GPIO_OSPEED_50MHZ,GPIO_PIN_5);
    }
}


static void gd_dac_dma_config(uint8_t dac_out , uint16_t *txbuff,uint32_t size)
{
    dma_parameter_struct dma_struct;
    dma_channel_enum dma_chx;

    rcu_periph_clock_enable(RCU_DMA1);

    
    /* clear all the interrupt flags */
    if(dac_out == DAC_OUT0)
    {
        dma_chx = DMA_CH2;
    }else if(dac_out == DAC_OUT0)
    {
        dma_chx = DMA_CH3;
    }
    dma_deinit(DMA1,dma_chx);

    dma_flag_clear(DMA1, dma_chx, DMA_INTF_GIF);
    dma_flag_clear(DMA1, dma_chx, DMA_INTF_FTFIF);
    dma_flag_clear(DMA1, dma_chx, DMA_INTF_HTFIF);
    dma_flag_clear(DMA1, dma_chx, DMA_INTF_ERRIF);

#if 1

    /* configure the DMA1 channel 2 */
    dma_struct.periph_addr  =  (uint32_t)(&DAC_OUT0_R12DH(DAC0));
    dma_struct.periph_width = DMA_PERIPHERAL_WIDTH_16BIT;//外设数据宽度
    dma_struct.memory_addr  = (uint32_t)txbuff;
    dma_struct.memory_width = DMA_MEMORY_WIDTH_16BIT;  // 内存数据宽度  
    dma_struct.number       = size;                    //数量
    dma_struct.priority     = DMA_PRIORITY_ULTRA_HIGH;//传输优先级
    dma_struct.periph_inc   = DMA_PERIPH_INCREASE_DISABLE;//外设地址禁用地址增加
    dma_struct.memory_inc   = DMA_MEMORY_INCREASE_ENABLE;//内存地址自动增加
    dma_struct.direction    = DMA_MEMORY_TO_PERIPHERAL;//内存到外设
    dma_init(DMA1, dma_chx, &dma_struct);
#endif

    /* configure the DMA1 channel 2 */
    // dma_struct.periph_addr  = DAC0_R12DH_ADDRESS;
    // dma_struct.periph_width = DMA_PERIPHERAL_WIDTH_16BIT;
    // dma_struct.memory_addr  = (uint32_t)convertarr16;
    // dma_struct.memory_width = DMA_MEMORY_WIDTH_16BIT;
    // dma_struct.number       = CONVERT_NUM;
    // dma_struct.priority     = DMA_PRIORITY_ULTRA_HIGH;
    // dma_struct.periph_inc   = DMA_PERIPH_INCREASE_DISABLE;
    // dma_struct.memory_inc   = DMA_MEMORY_INCREASE_ENABLE;
    // dma_struct.direction    = DMA_MEMORY_TO_PERIPHERAL;
    // dma_init(DMA1, DMA_CH2, &dma_struct);

    dma_circulation_enable(DMA1, dma_chx);
    dma_channel_enable(DMA1, dma_chx);
}



void gd_dac_convert_init(uint8_t dac_out)
{
    rcu_periph_clock_enable(RCU_DAC);
    gd_dac_out_gpio_config(dac_out);

    /* DAC trigger config */
    dac_trigger_source_config(DAC0, dac_out, DAC_TRIGGER_SOFTWARE);
    /* DAC trigger enable */
    dac_trigger_enable(DAC0, dac_out);
    /* DAC wave mode config */
    dac_wave_mode_config(DAC0, dac_out, DAC_WAVE_DISABLE);
    /* DAC output buffer config */
    dac_output_buffer_enable(DAC0, dac_out);
    /* DAC enable */
    dac_enable(DAC0, dac_out);

    dac_data_set(DAC0, dac_out, DAC_ALIGN_12B_R, 0);
    dac_software_trigger_enable(DAC0, dac_out);
}

void gd_dac_dma_timer_init(uint8_t dac_out,uint32_t timer_periph,uint16_t *txbuff,uint16_t size)
{
    rcu_periph_clock_enable(RCU_DAC);
    gd_dac_out_gpio_config(dac_out);

    gd_dac_dma_config(dac_out,txbuff,size);
    /* initialize DAC */
    /* DAC trigger config */
    if(timer_periph == TIMER5){
        dac_trigger_source_config(DAC0, dac_out, DAC_TRIGGER_T5_TRGO);}
    else if(timer_periph == TIMER6){
        dac_trigger_source_config(DAC0, dac_out, DAC_TRIGGER_T6_TRGO);
    }
    /* DAC trigger enable */
    dac_trigger_enable(DAC0, dac_out);
    /* DAC wave mode config */
    dac_wave_mode_config(DAC0, dac_out, DAC_WAVE_DISABLE);

    /* DAC enable */
    dac_enable(DAC0, dac_out);
    /* DAC DMA function enable */
    dac_dma_enable(DAC0, dac_out);

}



/// @brief //输出LFSR噪声
/// @param dac_out  DAC_OUT0 DAC_OUT1
/// @param value    DAC偏置,最低电压 
/// @param unmask_bits DAC振幅 最高电压 DAC_LFSR_BITS11_0 = 4095=3.3V
/// @param timer_periph 需要用定时器 TIMER5 TIMER6
void gd_dac_wave_lfsr_init(uint8_t dac_out ,uint16_t value ,uint32_t  unmask_bits ,uint32_t timer_periph)
{
    rcu_periph_clock_enable(RCU_DAC);
    gd_dac_out_gpio_config(dac_out);

    /* DAC trigger config */
    if(timer_periph == TIMER5){
        dac_trigger_source_config(DAC0, dac_out, DAC_TRIGGER_T5_TRGO);}
    else if(timer_periph == TIMER6){
        dac_trigger_source_config(DAC0, dac_out, DAC_TRIGGER_T6_TRGO);
    }
    
    /* DAC trigger enable */
    dac_trigger_enable(DAC0, dac_out);
    /* DAC wave mode config */
    dac_wave_mode_config(DAC0, dac_out, DAC_WAVE_MODE_LFSR);
    dac_lfsr_noise_config(DAC0, dac_out, unmask_bits);

    /* DAC enable */
    dac_enable(DAC0, dac_out);
    dac_data_set(DAC0, dac_out, DAC_ALIGN_12B_R, value);

}




/// @brief //三角波
/// @param dac_out DAC_OUT0 DAC_OUT1
/// @param value DAC偏置,最低电压 
/// @param amplitude  DAC振幅 最高电压 DAC_TRIANGLE_AMPLITUDE_4095 = 4095=3.3V
void gd_dac_wave_triangle_init(uint8_t dac_out ,uint16_t value ,uint32_t  amplitude,uint32_t timer_periph)
{

    rcu_periph_clock_enable(RCU_DAC);
    gd_dac_out_gpio_config(dac_out);

    /* DAC trigger config */
    if(timer_periph == TIMER5){
        dac_trigger_source_config(DAC0, dac_out, DAC_TRIGGER_T5_TRGO);}
    else if(timer_periph == TIMER6){
        dac_trigger_source_config(DAC0, dac_out, DAC_TRIGGER_T6_TRGO);
    }
    /* DAC trigger enable */
    dac_trigger_enable(DAC0, dac_out);
    /* DAC wave mode config */
    dac_wave_mode_config(DAC0, dac_out, DAC_WAVE_MODE_TRIANGLE);
    dac_triangle_noise_config(DAC0, dac_out, amplitude);

    /* DAC enable */
    dac_enable(DAC0, dac_out);
    dac_data_set(DAC0, dac_out, DAC_ALIGN_12B_R, value);
}



void gd_dac_set_convert_value(uint8_t dac_out,uint16_t data)
{
    dac_data_set(DAC0, dac_out, DAC_ALIGN_12B_R, data);
    dac_software_trigger_enable(DAC0, dac_out);
    //dac_enable(DAC0, dac_out);
}


这外设配置的基本代码。

把dac输出波形的代码封装成API函数,方便其他文件调用

#ifndef __MCU_DAC_SIGNAL_H
#define __MCU_DAC_SIGNAL_H


#include  "./am_type/am_type.h"
#include "./gd_dac/gd_dac.h"



//三角波-----------------------------------------------------------------------------------
//硬件三角波配置
void dac_triangle_signal_bsp_config(float freq);
//DAC+DMA+定时器三角波配置
void dac_triangle_signal_config( uint16_t min_mv, uint16_t max_mv,uint32_t freq);
//三角波输出信号
void dac_triangle_signal_start(void);
//三角波停止信号
void dac_triangle_signal_stop(void);
//---------------------------------------------------------------------------

//正玄波-------------------------
void dac_sine_signal_config( uint16_t min_mv, uint16_t max_mv,uint32_t freq);
void dac_sine_signal_start(void);
void dac_sine_signal_stop(void);
//----------------------------------

//pwm方波---------------------
void dac_pwm_signal_config( uint16_t min_mv, uint16_t max_mv,uint32_t freq);
void dac_pwm_signal_start(void);
void dac_pwm_signal_stop(void);
//-----------------------

//直流信号------------------
void dac_conver_value_signal_config(void);
void dac_set_out_conver_value_signal(uint16_t mv);
//--------------------------------------------------


#endif
#include "mcu_dac_signal.h"
#include "./gd_tim/gd_basice_tim.h"
#include <math.h>  // 用于sin()函数



#define M_PI		3.141592

uint16_t dac_buff[1024];
uint16_t dac_pwm_buff[2];





#if 1
//三角波

 
/// @brief  硬件dac+定时器输出三角波 0-3.3
/// @param freq  0.1-200
void dac_triangle_signal_bsp_config(float freq)
{
    uint16_t arr,psc;
    double t0,t1;

    t0 = 1000000/freq;
    t1 = t0/(4095*2);

    psc = 12;//0.1us
    arr = (uint16_t)(t1*10);
    printf("freq=%f,t0=%f,t1=%f,psc=%d,arr=%d\r\n",freq,t0,t1,psc,arr);
    gd_basic_timer56_init(TIMER6,arr,psc,1);
    gd_dac_wave_triangle_init(DAC_OUT0,0,DAC_TRIANGLE_AMPLITUDE_4095,TIMER6);
}

/// @brief 计算三角波的dac值
/// @param dacbuff 保存dac输出地址
/// @param size 点数,分辨率 64、128,256需要单数
/// @param min 峰谷
/// @param max 峰顶
static void dac_triangle_cal_dacbuff(uint16_t *dacbuff, uint16_t size,uint16_t min,uint16_t max)
{
    uint16_t i=0; 
    uint16_t k;
    double dac_scope;

    if((dacbuff == NULL)  ){return ;}
    if(min < 0){ 
        min=0;}
    if(max > 4095){
        max=4095 ;}


    dac_scope = (double)(max - min);//范围

    k = ((uint16_t)dac_scope)/(size/2);//等份
        

    for(i=0;i < size;i++)
    {
        if(i <= size/2){
            dacbuff[i] = i*k+min;//从低到高
        }
        else
        {
            dacbuff[i] =max-(i-size/2)*k ;//从高到低
        }    
    }
    dacbuff[0] = min;
    dacbuff[size/2] = max;
}

/// @brief dac+dma+定时器输出三角波
/// @param min_mv 峰谷0-3300
/// @param max_mv 0-3300
/// @param freq 频率
void dac_triangle_signal_config( uint16_t min_mv, uint16_t max_mv,uint32_t freq)
{
    uint16_t i,size ;
    uint16_t min;
    uint16_t max;
    uint16_t arr,psc;
    double t0,t1;
 
    printf("dac triangle1 :min_mv=%d , max_mv=%d,freq=%d \r\n",min_mv,max_mv,freq);

    min = (uint16_t)((min_mv*4095)/3300);
    max = (uint16_t)((max_mv*4095)/3300);

    if(freq > 100000){ freq = 100000;}

    if(freq >= 50000){  
        size = 50;
    }
    else if(freq >= 10000){
        size = 100;
    }
    else if(freq >= 1000){
        size = 256;
    }
    else if(freq >= 1)
    {
        size = 512;
    }
    else
    {
        size = 1024;
    }
    printf("dac triangle2 :min=%d , max=%d,size=%d \r\n",min,max,size);

    t0 = (1000000.f/freq); //us
    t1 = (t0 / size);//一个点需要的时间

    if(freq >= 1)
    {
        psc = 6;//0.05us
        arr = (uint16_t)((t1*5)+0.5);
    }
    else
    {
        psc = 60;//0.5us
        arr = (uint16_t)(t1*2+0.5);
    }


    printf("dac triangle3 :t0=%f , t1=%f,psc=%d ,arr=%d\r\n",t0,t1,psc,arr);

    dac_triangle_cal_dacbuff(dac_buff,size,min,max);

    // printf("dac triangle4 buff\r\n");
    // for(i=0;i<size;i++){
    //     printf(" %d ",dac_buff[i]);
    // }
    // printf("\r\n");

    gd_basic_timer56_init(TIMER6,arr,psc,1);
    gd_dac_dma_timer_init(DAC_OUT0,TIMER6,dac_buff,size);

}
//开始信号
void dac_triangle_signal_start(void)
{
    timer_enable(TIMER6);
}
//停止信号
void dac_triangle_signal_stop(void)
{
    timer_disable(TIMER6);
    printf("timer_disable\r\n");
}


#endif


#if 1
//正玄波

/// @brief 计算正弦波的dac值
/// @param dacbuff 保存dac输出地址
/// @param size 点数,建议使用较大的单数以获得更平滑的波形 63/ 127
/// @param min 波形最小值 
/// @param max 波形最大值
void dac_sine_cal_dacbuff(uint16_t *dacbuff, uint16_t size, uint16_t min, uint16_t max)
{
    uint16_t i;
    double angle;           // 角度(弧度)
    double dac_scope;       // 波形范围
    double mid_value;       // 中间值
    
    // 参数合法性检查
    if((dacbuff == NULL) ){
        return;
    }
    if(min < 0){
        min = 0;
    }
    if(max > 4095){
        max = 4095;
    }
    
    // 计算波形范围和中间值
    dac_scope = (double)(max - min);
    mid_value = min + dac_scope / 2.0;  // 正弦波的直流偏置
    
    // 生成正弦波数据
    for(i = 0; i < size; i++){
        // 计算当前点对应的角度(0到2π)
        angle = 2 * M_PI * i / (size - 1);
        
        // 计算正弦值并映射到[min, max]范围
        // sin(angle)范围是[-1, 1],转换为[min, max]范围
        dacbuff[i] = (uint16_t)(mid_value + (dac_scope / 2.0) * sin(angle));
    }
    
    // 确保起点和终点值正确(对于完整周期的正弦波,起点和终点应接近min值)
    //dacbuff[0] = min;
}

void dac_sine_signal_config( uint16_t min_mv, uint16_t max_mv,uint32_t freq)
{
    uint16_t i,size ;
    uint16_t min;
    uint16_t max;
    uint16_t arr,psc;
    double t0,t1;
 
    printf("dac sine1 :min_mv=%d , max_mv=%d,freq=%d \r\n",min_mv,max_mv,freq);

    min = (uint16_t)((min_mv*4095)/3300);
    max = (uint16_t)((max_mv*4095)/3300);

    if(freq > 100000){ freq = 100000;}

    if(freq >= 50000){  
        size = 50;
    }
    else if(freq >= 10000){
        size = 100;
    }
    else if(freq >= 1000){
        size = 256;
    }
    else if(freq >= 1)
    {
        size = 512;
    }
    else
    {
        size = 1024;
    }
    printf("dac sine2 :min=%d , max=%d,size=%d \r\n",min,max,size);

    t0 = (1000000.f/freq); //us
    t1 = (t0 / size);//一个点需要的时间

    if(freq >= 1)
    {
        psc = 6;//0.05us
        arr = (uint16_t)((t1*20)+0.5);
    }
    else
    {
        psc = 60;//0.5us
        arr = (uint16_t)(t1*2+0.5);
    }


    printf("dac sine3 :t0=%f , t1=%f,psc=%d ,arr=%d\r\n",t0,t1,psc,arr);

    dac_sine_cal_dacbuff(dac_buff,size,min,max);

    // printf("dac sine14 buff\r\n");
    // for(i=0;i<size;i++){
    //     printf(" %d ",dac_buff[i]);
    // }
    // printf("\r\n");

    gd_basic_timer56_init(TIMER6,arr,psc,1);
    gd_dac_dma_timer_init(DAC_OUT0,TIMER6,dac_buff,size);

}


//开始信号
void dac_sine_signal_start(void)
{
    timer_enable(TIMER6);
}
//停止信号
void dac_sine_signal_stop(void)
{
    timer_disable(TIMER6);
}

#endif


//dac-pwm方波------------------------------------

/// @brief dac-pwm方波
/// @param min_mv  
/// @param max_mv 
/// @param freq 1- 1M
void dac_pwm_signal_config( uint16_t min_mv, uint16_t max_mv,uint32_t freq)
{
    uint16_t i,size;
    uint16_t min,max;
    uint16_t arr,psc;
    double t0,t1;

    if(min_mv < 0){
        min_mv =0;
    }
    if(max_mv > 3300){
        max_mv = 3300;
    }

    if(freq < 1){
        freq = 1;
    }
    if(freq > 1000000){
        freq = 1000000;
    }


    min = (uint16_t)((min_mv*4095)/3300);
    max = (uint16_t)((max_mv*4095)/3300);

    size = sizeof(dac_pwm_buff)/sizeof(dac_pwm_buff[0]);
    for(i=0 ;i<size/2 ;i++ )
    {
        dac_pwm_buff[i]= min;
    }
    for(i=0 ;i< size/2;i++ )
    {
        dac_pwm_buff[i+size/2]= max;
    }



    t0 = (1000000.f/freq);
    t1 = t0/size;

    if(freq >= 100)
    {
        psc = 12;//0.1us
        arr = (uint16_t)((t1*10)+0.5);
    }
    else if(freq >= 10)
    {
        psc = 12;//1us
        arr = (uint16_t)(t1+0.5);
    }else
    {
        psc = 1200;//10us
        arr = (uint16_t)(t1+0.5);  
    }

    gd_basic_timer56_init(TIMER6,arr,psc,1);
    gd_dac_dma_timer_init(DAC_OUT0,TIMER6,dac_pwm_buff,size);

}

//开始信号
void dac_pwm_signal_start(void)
{
    timer_enable(TIMER6);
}
//停止信号
void dac_pwm_signal_stop(void)
{
    timer_disable(TIMER6);
}

//------------------------------------


//直流信号------------------
void dac_conver_value_signal_config(void)
{
    gd_dac_convert_init(DAC_OUT0);  
}

void dac_set_out_conver_value_signal(uint16_t mv)
{
    uint16_t data;

    data = (uint16_t)(mv*4095/3300);
    gd_dac_set_convert_value(DAC_OUT0,data);
}
//-----------------------

驱动代码基本完成,直接调用函数输出波形就可以。

            dac_sine_signal_config(0,3000,1000);

            dac_pwm_signal_start();

这样子就是输出一个0-3V的1KHZ的正弦波了,dac_sine_signal_stop()这是停止输出,其实就是关闭定时器。

//--------------------------------------------------------------------------------------------------------------------------

因为MCU的DAC最大电压是3.3V,如果需要超过3.3V需用到运放,我目前放大了3倍

使用示波器看一下波形。

正弦波  频率:1K       振幅0-6V.

频率和电压有一点误差,需要软件补偿调整一下。

方波  频率:10K       振幅0-3V.

波形就很接近了。

//===================================================================

关于波形发送器基本就这样了

工程代码就不上传了,写的有点乱,特别OLED和按键交互哪里。

PCB我上传到嘉立创的硬件开源平台,这一版的AD9833输出最终信号输出端,在高频5M以上的时候会有问题,因该是我后级运放有点问题,还有可能是高频对MCP41010干扰太大了。AD9833芯片出来的信号是正常的。

Logo

有“AI”的1024 = 2048,欢迎大家加入2048 AI社区

更多推荐