引言​​

RAG(检索增强生成)通过融合外部知识库与LLM生成能力,解决了传统大模型的知识滞后性、幻觉问题。但RAG并非固定架构,而是一套可动态组合的技术体系。本文将拆解三类策略、17种实现方案,并给出工程选型指南。

一、文档分块:知识表示的核心

文档分块质量直接影响检索效率,5种方法解决不同场景:

基础分块(Simple RAG)​​
  • 原理:文本→向量化→TopK检索→拼接生成
  • 痛点:易割裂语义连续性

语义分块(Semantic Chunking)​​
  • 使用句法树/NLP模型动态切割,保留完整语义单元
  • 关键技术:Transformer Embedding + 动态窗口

上下文增强(Context Enriched)​​
  • 为每个块添加前后邻居段落,组成"上下文块"
  • 优势:提升长文档推理连贯性

块头标签(Contextual Headers)​​
  • 提取标题/章节名作为元数据嵌入向量
  • 适用场景:技术手册、法律文书等结构化文档

文档增强(Augmentation)​​
  • 构建多视图数据:摘要+正文+元数据
  • 工具推荐:ChunkRAG的多向量索引
# 伪代码示例:多视图向量化 doc_views embeddings

二、检索排序:精准命中关键知识

检索阶段需平衡召回率与精准度,4大进阶方案:

查询改写(Query Transformation)​​
  • 用LLM生成同义问题,扩大检索覆盖面
  • LangChain实现:MultiQueryRetriever

重排序(Reranker)​​
  • 对TopK结果用Cross-Encoder二次打分
  • 模型选择:Cohere Reranker (精度↑30%)

相关片段提取(RSE)​​
  • 在长段落中定位关键句子
  • 技术方案:BERT + Pointer Network
# RSE核心逻辑 relevant_span
上下文压缩(Contextual Compression)​​
  • 剔除无关文本,降低token消耗
  • LangChain组件:ContextCompressor

三、反馈与自适应:系统的进化引擎

后处理策略让RAG持续迭代,8种方案实现动态优化:

反馈闭环(Feedback Loop)​​
  • 用户点击数据→训练排序模型
  • 适用场景:智能客服对话日志
自适应路由(Adaptive RAG)​​
  • 根据问题类型动态选择检索策略
  • 实现方案:LangChain Router

自我决策(Self RAG)​​
  • LLM判断是否需外部检索
  • Prompt设计示例: [系统] 请评估:能否直接回答该问题?若不能,请说明所需信息。
知识图谱融合(Knowledge Graph)​​
  • 文档→三元组→图谱推理
  • 工具链:Neo4j + TransE嵌入

多级索引(Hierarchical Indices)​​
  • 构建文档树形索引,分层检索
  • FAISS优化:Nested Indexing

假设文档嵌入(HyDE)​​
  • 生成理想答案→反向检索支撑材料
  • 解决碎片化文档难题

工程选型指南

目标需求 推荐方案组合
快速上线 Simple RAG + 语义分块
高精度场景 Reranker + RSE
低成本运行 Self RAG + 上下文压缩
复杂知识推理 知识图谱 + 多级索引

笔者建议:实际需根据数据规模、响应延迟、预算综合设计


结语

RAG系统的核心竞争力在于​​模块化组合能力​​:

  • 文档分块决定知识表示质量
  • 检索排序影响信息命中精度
  • 反馈机制驱动系统持续进化

掌握这17种可插拔组件,方能构建适应业务演进的智能体。

最后我们再总结一下这17种RAG 实现方法的技术原理:

如果本次分享对你有所帮助,记得告诉身边有需要的朋友,"我们正在经历的不仅是技术迭代,而是认知革命。当人类智慧与机器智能形成共生关系,文明的火种将在新的维度延续。"在这场波澜壮阔的文明跃迁中,主动拥抱AI时代,就是掌握打开新纪元之门的密钥,让每个人都能在智能化的星辰大海中,找到属于自己的航向。

我们该怎样系统的去转行学习大模型 ?

很多想入行大模型的人苦于现在网上的大模型老课程老教材,学也不是不学也不是,基于此我用做产品的心态来打磨这份大模型教程,深挖痛点并持续修改了近100余次后,终于把整个AI大模型的学习门槛,降到了最低

在这个版本当中:

第一不需要具备任何算法和数学的基础
第二不要求准备高配置的电脑
第三不必懂Python等任何编程语言

您只需要听我讲,跟着我做即可,为了让学习的道路变得更简单,这份大模型教程已经给大家整理并打包分享出来, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

👉CSDN大礼包🎁:全网最全《LLM大模型学习资源包》免费分享(安全链接,放心点击)👈

一、大模型经典书籍(免费分享)

AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源

在这里插入图片描述

二、640套大模型报告(免费分享)

这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
在这里插入图片描述

三、大模型系列视频教程(免费分享)

在这里插入图片描述

四、2025最新大模型学习路线(免费分享)

我们把学习路线分成L1到L4四个阶段,一步步带你从入门到进阶,从理论到实战。

在这里插入图片描述

L1阶段:启航篇丨极速破界AI新时代
​​​​​​​L1阶段:我们会去了解大模型的基础知识,以及大模型在各个行业的应用和分析;学习理解大模型的
核心原理、关键技术以及大模型应用场景。

在这里插入图片描述

L2阶段:攻坚篇丨RAG开发实战工坊

L2阶段是我们的AI大模型RAG应用开发工程,我们会去学习RAG检索增强生成:包括Naive RAG、Advanced-RAG以及RAG性能评估,还有GraphRAG在内的多个RAG热门项目的分析。

在这里插入图片描述

L3阶段:跃迁篇丨Agent智能体架构设计

L3阶段:大模型Agent应用架构进阶实现,我们会去学习LangChain、 LIamaIndex框架,也会学习到AutoGPT、 MetaGPT等多Agent系统,打造我们自己的Agent智能体。

在这里插入图片描述

L4阶段:精进篇丨模型微调与私有化部署

L4阶段:大模型的微调和私有化部署,我们会更加深入的探讨Transformer架构,学习大模型的微调技术,利用DeepSpeed、Lamam Factory等工具快速进行模型微调;并通过Ollama、vLLM等推理部署框架,实现模型的快速部署。

在这里插入图片描述

L5阶段:专题集丨特训篇 【录播课】

在这里插入图片描述
全套的AI大模型学习资源已经整理打包,有需要的小伙伴可以微信扫描下方二维码免费领取

👉CSDN大礼包🎁:全网最全《LLM大模型学习资源包》免费分享(安全链接,放心点击)👈

Logo

有“AI”的1024 = 2048,欢迎大家加入2048 AI社区

更多推荐