在智能代理(Web Agent)领域,阿里巴巴推出的 WebSailor 凭借超越人类的推理能力引发广泛关注。作为新一代推理型 Web Agent,它能够理解复杂用户需求、自主规划网页交互流程,并通过深度推理解决需要多步骤逻辑分析的问题。本文将以程序员视角,从架构设计、核心推理机制到实战验证,通过代码示例解析 WebSailor 的技术实现,揭示其超越传统 Web Agent 的关键突破。

核心架构设计:推理与交互的协同机制

WebSailor 采用模块化架构设计,将推理决策、网页交互与记忆管理解耦又有机结合,形成高效的问题解决闭环。这种架构既保证了推理逻辑的灵活性,又为复杂网页交互提供了稳定支撑。

架构核心代码实现与解析


from typing import List, Dict, Callable, Optional, Tuple

import time

from enum import Enum

import requests

from bs4 import BeautifulSoup

# 动作类型定义

class ActionType(Enum):

"""Web Agent动作类型枚举"""

NAVIGATE = "navigate" # 页面导航

CLICK = "click" # 点击元素

INPUT = "input" # 输入文本

EXTRACT = "extract" # 提取信息

FINISH = "finish" # 完成任务

# 动作数据结构

class AgentAction:

"""Agent动作数据结构"""

def __init__(self, action_type: ActionType,

parameters: Dict,

reasoning: str = ""):

self.action_type = action_type

self.parameters = parameters

self.reasoning = reasoning # 动作推理依据

self.timestamp = time.time()

# 状态数据结构

class AgentState:

"""Agent状态数据结构"""

def __init__(self):

self.current_url = None

self.page_content = None

self.dom_tree = None

self.task_progress = []

self.memory = {} # 短期记忆存储

self.last_action = None

# 推理引擎核心类

class ReasoningEngine:

"""推理引擎:负责决策与规划"""

def __init__(self, task_analyzer: Callable, planner: Callable):

self.task_analyzer = task_analyzer # 任务分析器

self.planner = planner # 步骤规划器

def analyze_task(self, task: str) -> Dict:

"""分析用户任务,生成目标分解"""

return self.task_analyzer(task)

def plan_next_action(self, state: AgentState, task_goals: Dict) -> AgentAction:

"""根据当前状态和任务目标规划下一步动作"""

return self.planner(state, task_goals)

# 网页交互引擎

class WebInteractionEngine:

"""网页交互引擎:负责执行具体网页操作"""

def __init__(self, session: requests.Session = None):

self.session = session or requests.Session()

self.headers = {

"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36"

}

def navigate(self, url: str) -> Tuple[str, BeautifulSoup]:

"""导航到指定URL并解析页面"""

response = self.session.get(url, headers=self.headers)

dom_tree = BeautifulSoup(response.text, "html.parser")

return response.text, dom_tree

def click_element(self, dom_tree: BeautifulSoup, selector: str) -> Optional[str]:

"""模拟点击元素"""

element = dom_tree.select_one(selector)

if not element:

return None

# 提取链接或表单提交目标

if element.has_attr("href"):

return element["href"]

elif element.has_attr("formaction"):

return element["formaction"]

return None

def input_text(self, dom_tree: BeautifulSoup, selector: str, text: str) -> bool:

"""模拟输入文本"""

element = dom_tree.select_one(selector)

if element and element.has_attr("name"):

# 在实际实现中会更新表单数据

return True

return False

def extract_information(self, dom_tree: BeautifulSoup, criteria: Dict) -> List[Dict]:

"""从页面提取信息"""

results = []

selector = criteria.get("selector")

if not selector:

return results

elements = dom_tree.select(selector)

for elem in elements:

results.append({

"text": elem.get_text(strip=True),

"attributes": {k: elem.get(k) for k in elem.attrs}

})

return results

# WebSailor核心类

class WebSailor:

"""阿里WebSailor核心实现"""

def __init__(self, reasoning_engine: ReasoningEngine,

interaction_engine: WebInteractionEngine):

self.reasoning_engine = reasoning_engine

self.interaction_engine = interaction_engine

self.state = AgentState()

self.task_goals = None

def start_task(self, task: str, initial_url: str) -> Dict:

"""开始执行任务"""

# 1. 分析任务目标

self.task_goals = self.reasoning_engine.analyze_task(task)

self.state.task_progress.append(f"任务分析完成: {self.task_goals}")

# 2. 初始导航

content, dom = self.interaction_engine.navigate(initial_url)

self.state.current_url = initial_url

self.state.page_content = content

self.state.dom_tree = dom

return {"status": "started", "initial_url": initial_url}

def step(self) -> AgentAction:

"""执行单步推理与动作"""

# 1. 推理下一步动作

next_action = self.reasoning_engine.plan_next_action(

self.state, self.task_goals

)

self.state.last_action = next_action

self.state.task_progress.append(

f"执行动作: {next_action.action_type.value}, 推理: {next_action.reasoning}"

)

# 2. 执行动作并更新状态

if next_action.action_type == ActionType.NAVIGATE:

url = next_action.parameters.get("url")

if url:

content, dom = self.interaction_engine.navigate(url)

self.state.current_url = url

self.state.page_content = content

self.state.dom_tree = dom

elif next_action.action_type == ActionType.CLICK:

selector = next_action.parameters.get("selector")

target_url = self.interaction_engine.click_element(

self.state.dom_tree, selector

)

if target_url:

content, dom = self.interaction_engine.navigate(target_url)

self.state.current_url = target_url

self.state.page_content = content

self.state.dom_tree = dom

elif next_action.action_type == ActionType.EXTRACT:

criteria = next_action.parameters.get("criteria", {})

extracted = self.interaction_engine.extract_information(

self.state.dom_tree, criteria

)

self.state.memory["extracted_info"] = extracted

return next_action

WebSailor 的核心架构由三大模块构成:推理引擎负责任务分析与动作规划,通过深度推理生成合理的操作序列;网页交互引擎处理实际的网页导航、点击、输入等操作,屏蔽不同网站的交互差异;状态管理模块维护任务进度、页面状态与短期记忆,为推理提供完整上下文。这种架构的优势在于:推理与执行解耦使模型可以专注于决策逻辑;模块化设计便于针对不同场景优化特定组件;完整的状态跟踪支持复杂多步骤推理任务。与传统 Web Agent 相比,WebSailor 的推理引擎具备更强的逻辑分析能力,能够处理需要因果推理的复杂任务。

推理机制实现:超越人类的逻辑分析能力

WebSailor 的核心突破在于其推理引擎的设计,能够实现类似人类的逻辑分析与问题分解,甚至在复杂任务中展现超越人类的规划能力。这种能力源于先进的任务分解策略与动态推理机制。

核心推理机制代码实现


# 推理引擎扩展实现

class AdvancedReasoningEngine(ReasoningEngine):

"""增强型推理引擎:实现复杂逻辑推理"""

def __init__(self):

super().__init__(

task_analyzer=self._analyze_task,

planner=self._plan_next_action

)

self.subgoal_queue = [] # 子目标队列

self.feedback_memory = {} # 反馈记忆

def _analyze_task(self, task: str) -> Dict:

"""任务分析与目标分解"""

# 实际实现中会调用大模型进行任务解析

# 这里简化实现复杂任务分解逻辑

is_complex = any(keyword in task.lower() for keyword in

["比较", "分析", "汇总", "多步骤", "首先"])

if is_complex:

# 复杂任务分解为子目标

subgoals = self._decompose_task(task)

self.subgoal_queue = subgoals

return {

"main_goal": task,

"subgoals": subgoals,

"is_complex": True

}

else:

# 简单任务直接定义目标

return {

"main_goal": task,

"subgoals": [task],

"is_complex": False

}

def _decompose_task(self, task: str) -> List[str]:

"""将复杂任务分解为子目标"""

# 示例:将"比较三家电商平台同款产品价格"分解为子目标

if "比较" in task and "价格" in task:

return [

"确定目标产品具体信息",

"导航到第一个电商平台",

"搜索目标产品并记录价格",

"导航到第二个电商平台",

"搜索目标产品并记录价格",

"导航到第三个电商平台",

"搜索目标产品并记录价格",

"汇总价格信息并比较"

]

# 其他任务分解逻辑...

return [task]

def _plan_next_action(self, state: AgentState, task_goals: Dict) -> AgentAction:

"""基于当前状态和目标规划动作"""

# 检查是否有未完成的子目标

if not self.subgoal_queue:

return AgentAction(

action_type=ActionType.FINISH,

parameters={"result": state.memory.get("extracted_info")},

reasoning="所有子目标已完成"

)

current_subgoal = self.subgoal_queue[0]

# 根据当前子目标和页面状态推理动作

if "确定目标产品" in current_subgoal:

# 检查是否已提取产品信息

if "product_info" not in state.memory:

return AgentAction(

action_type=ActionType.EXTRACT,

parameters={

"criteria": {

"selector": ".product-title",

"attributes": ["text"]

}

},

reasoning="需要先提取当前页面的产品信息作为比较基准"

)

else:

# 完成当前子目标

self.subgoal_queue.pop(0)

return self._plan_next_action(state, task_goals)

elif "导航到" in current_subgoal and "电商平台" in current_subgoal:

platform_name = current_subgoal.split("到")[1].split("电商")[0].strip()

# 从记忆中获取平台URL或搜索

platform_url = self._get_platform_url(platform_name)

if platform_url:

return AgentAction(

action_type=ActionType.NAVIGATE,

parameters={"url": platform_url},

reasoning=f"需要导航到{platform_name}以搜索目标产品"

)

else:

return AgentAction(

action_type=ActionType.NAVIGATE,

parameters={"url": f"https://www.baidu.com/s?wd={platform_name}"},

reasoning=f"未找到{platform_name}直接链接,先搜索获取"

)

elif "搜索目标产品" in current_subgoal:

# 检查是否有产品信息

product_info = state.memory.get("product_info", ["目标产品"])[0]

# 查找搜索框

search_box = self._find_search_selector(state.dom_tree)

if search_box:

return AgentAction(

action_type=ActionType.INPUT,

parameters={

"selector": search_box,

"text": product_info

},

reasoning=f"在搜索框输入产品名称: {product_info}"

)

else:

return AgentAction(

action_type=ActionType.EXTRACT,

parameters={

"criteria": {"selector": "input[type='text']"}

},

reasoning="未找到搜索框,需要先定位搜索元素"

)

# 其他子目标处理逻辑...

return AgentAction(

action_type=ActionType.FINISH,

parameters={},

reasoning="完成所有任务步骤"

)

def _get_platform_url(self, platform_name: str) -> Optional[str]:

"""获取平台URL(实际实现会更复杂)"""

platform_map = {

"淘宝": "https://www.taobao.com",

"京东": "https://www.jd.com",

"拼多多": "https://www.pinduoduo.com"

}

return platform_map.get(platform_name)

def _find_search_selector(self, dom_tree: BeautifulSoup) -> Optional[str]:

"""查找搜索框选择器"""

# 简化实现:查找常见的搜索框模式

search_boxes = dom_tree.select("input[type='text']")

for box in search_boxes:

if "search" in box.get("name", "").lower() or "keyword" in box.get("name", "").lower():

# 生成CSS选择器

return f"input[name='{box['name']}']"

return None if not search_boxes else "input[type='text']"

WebSailor 的推理机制实现了三项关键突破:首先是动态任务分解能力,能够将复杂任务自动拆解为可执行的子目标序列,解决了传统 Agent 只能处理固定流程任务的局限;其次是基于记忆的推理链构建,通过短期记忆保存中间结果,支持多步骤逻辑推理;最后是自适应动作规划,能够根据页面实际状态调整操作策略,处理网页结构变化等意外情况。这些机制使 WebSailor 在需要深度逻辑分析的任务中表现出色,例如价格比较、信息汇总、多步骤表单填写等场景,其推理准确性和效率往往超越人类手动操作。

实战效能验证:复杂场景中的能力表现

在实际应用场景中,WebSailor 的推理能力和交互效率需要通过定量指标和定性分析进行验证。通过对比实验可以明确其在复杂 Web 任务中的优势,为技术选型提供客观依据。

效能验证代码与分析


import time

import json

from typing import List, Dict

# 任务测试框架

class WebAgentTester:

"""Web Agent测试框架"""

def __init__(self, agent: WebSailor):

self.agent = agent

self.test_results = []

def run_test(self, task: str, initial_url: str, max_steps: int = 20) -> Dict:

"""运行单个任务测试"""

start_time = time.time()

steps = []

success = False

result = None

try:

# 启动任务

init_result = self.agent.start_task(task, initial_url)

if init_result["status"] != "started":

return {"task": task, "success": False, "error": "初始化失败"}

# 执行任务步骤

for step in range(max_steps):

action = self.agent.step()

steps.append({

"step": step + 1,

"action_type": action.action_type.value,

"parameters": action.parameters,

"reasoning": action.reasoning

})

# 检查是否完成任务

if action.action_type == ActionType.FINISH:

success = True

result = action.parameters.get("result")

break

# 记录结果

total_time = time.time() - start_time

self.test_results.append({

"task": task,

"success": success,

"steps": len(steps),

"time": total_time,

"result": result,

"steps_detail": steps

})

return {

"task": task,

"success": success,

"steps": len(steps),

"time": total_time,

"error": None

}

except Exception as e:

return {

"task": task,

"success": False,

"steps": len(steps),

"time": time.time() - start_time,

"error": str(e)

}

def run_batch_tests(self, tasks: List[Dict]) -> Dict:

"""运行批量测试"""

batch_results = []

for task in tasks:

print(f"测试任务: {task['description']}")

result = self.run_test(

</doubaocanvas>

Logo

有“AI”的1024 = 2048,欢迎大家加入2048 AI社区

更多推荐