KL距离

  • 全称
    Kullback-Leibler差异(Kullback-Leibler divergence)
  • 又称
    相对熵(relative entropy)
  • 数学本质
    衡量相同事件空间两个概率分布相对差距测度
  • 定义
    D(p∣∣q)=∑x∈Xp(x)logp(x)q(x)D(p||q)= \sum_{x \in X} p(x) log \frac {p(x)}{q(x)} D(pq)=xXp(x)logq(x)p(x)
    其中,p(x)p(x)p(x)q(x)q(x)q(x)是两个概率分布。

定义中约定
0log(0/q)=00log(0/q)=00log(0/q)=0plog(p/0)=∞plog(p/0)=\inftyplog(p/0)=

等价形式
D(p∣∣q)=Ep[logp(X)q(X)]D(p||q)=E_{p}[log\frac{p(X)}{q(X)}]D(pq)=Ep[logq(X)p(X)]

  • 说明

    • 两个概率分布的差距越大,KL距离越大;
    • 当两个概率分布相同时,KL距离为0
  • 推论

  1. 互信息衡量一个联合分布与独立性有多大的差距:
    I(X;Y)=X(X)−H(X∣Y)=−∑x∈Xp(x)logp(x)+∑x∈X∑y∈Yp(x,y)logp(x∣y)=∑x∈X∑y∈Yp(x,y)logp(x∣y)p(x)=∑x∈X∑y∈Yp(x,y)logp(x,y)p(x)p(y)=D[p(x,y)∣∣p(x)p(y)] \begin{aligned} I(X;Y) &=X(X)-H(X|Y) \\ & =-\sum_{x \in X}p(x)logp(x)+\sum_{x \in X}\sum_{y \in Y}p(x,y)logp(x|y) \\ & =\sum_{x \in X}\sum_{y \in Y}p(x,y)log\frac{p(x|y)}{p(x)} \\ & =\sum_{x \in X}\sum_{y \in Y}p(x,y)log\frac{p(x,y)}{p(x)p(y)} \\ & =D[p(x,y)||p(x)p(y)] \end{aligned} I(X;Y)=X(X)H(XY)=xXp(x)logp(x)+xXyYp(x,y)logp(xy)=xXyYp(x,y)logp(x)p(xy)=xXyYp(x,y)logp(x)p(y)p(x,y)=D[p(x,y)p(x)p(y)]

  2. 条件相对熵:
    D[p(y∣x)∣∣q(y∣x)]=∑xp(x)∑yp(y∣x)logp(y∣x)q(y∣x)D[p(y|x)||q(y|x)]=\sum_{x}p(x)\sum_{y}p(y|x)log\frac{p(y|x)}{q(y|x)}D[p(yx)q(yx)]=xp(x)yp(yx)logq(yx)p(yx)

  3. 相对熵的链式法则:
    D[p(x,y)∣∣q(x,y)]=D[p(x)∣∣q(x)]+D[p(y∣x)∣∣q(y∣x)]D[p(x,y)||q(x,y)]=D[p(x)||q(x)]+D[p(y|x)||q(y|x)]D[p(x,y)q(x,y)]=D[p(x)q(x)]+D[p(yx)q(yx)]

Logo

有“AI”的1024 = 2048,欢迎大家加入2048 AI社区

更多推荐