sklearn-导入数据(第1讲)
导入数据2020/5/27=================================================================================1.1.sklearn中导入数据方法有:pandas.read_csv,np.loadtxt,python csv.reader1.2.sklearn中数据多为numpy 2D,1D,pd.Series,pd.D
·
导入数据 2020/5/27
=================================================================================
1.1.sklearn中导入数据方法有:pandas.read_csv,np.loadtxt,python csv.reader
1.2.sklearn中数据多为numpy 2D,1D,pd.Series,pd.DataFrame,list
1.3.数据类型多为np.float64,int64
=================================================================================
2.实例:
import csv,pandas as pd,numpy as np
# 使用numpy导入CSV数据
filename = 'pima_data.csv'
with open(filename, 'rt') as raw_data:
data = np.loadtxt(raw_data, delimiter=',')
print(data.shape)
# 使用Pandas导入CSV数据
filename = 'pima_data.csv'
names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class']
data = pd.read_csv(filename, names=names)
print(data.shape)
# 使用标准的Python类库导入CSV数据
filename = 'pima_data.csv'
with open(filename, 'rt') as raw_data:
readers = csv.reader(raw_data, delimiter=',')
x = list(readers)
data = np.array(x).astype('float')
print(data.shape)
==================================================================================
更多推荐
所有评论(0)