OpenCV求得图像的最大连通域
直接贴代码了。在写的时候借鉴了网上的一些代码,可是忘记保留链接了,所以此处向可能的贡献者致谢。#include#include#include#includeusing namespace std;#pragma comment( lib, "cv.lib" )#pragma comment( lib, "cxcore.lib" )
·
直接贴代码了。在写的时候借鉴了网上的一些代码,可是忘记保留链接了,所以此处向可能的贡献者致谢。
#include <cv.h>
#include <highgui.h>
#include <vector>
#include <algorithm>
using namespace std;
#pragma comment( lib, "cv.lib" )
#pragma comment( lib, "cxcore.lib" )
#pragma comment( lib, "highgui.lib" )
int main()
{
IplImage *src = cvLoadImage("lena.jpg", CV_LOAD_IMAGE_COLOR);
cvNamedWindow("原始图像");
cvShowImage("原始图像", src);
IplImage* dst=cvCreateImage(cvSize(src->width,src->height),IPL_DEPTH_8U,1);
cvCvtColor(src,dst,CV_BGR2GRAY);
cvNamedWindow("灰度图像");
cvShowImage("灰度图像", src);
cvThreshold(dst, dst, 0.0, 255.0, CV_THRESH_BINARY | CV_THRESH_OTSU);//OTSU二值化
IplConvKernel *element = cvCreateStructuringElementEx(5, 5, 0, 0, CV_SHAPE_ELLIPSE);
cvMorphologyEx(dst, dst, NULL, element, CV_MOP_OPEN);//开运算,去除比结构元素小的点
cvReleaseStructuringElement(&element);
cvNamedWindow("二值图像");
cvShowImage("二值图像", dst);
int w,h;
CvSize sz = cvGetSize(dst);
int color = 254;//不对0计数,不可能为255,所以254
for (w=0; w<sz.width; w++)
{
for (h=0; h<sz.height; h++)
{
if (color > 0)
{
if (CV_IMAGE_ELEM(dst, unsigned char, h, w) == 255)
{
//把连通域标记上颜色
cvFloodFill(dst, cvPoint(w,h), CV_RGB( color,color,color));
color--;
}
}
}
}
cvNamedWindow("标记颜色后的图像");
cvShowImage("标记颜色后的图像", dst);
int colorsum[255] = {0};
for (w=0; w<sz.width; w++)
{
for (h=0; h<sz.height; h++)
{
if (CV_IMAGE_ELEM(dst, unsigned char, h, w) > 0)
{
colorsum[CV_IMAGE_ELEM(dst, unsigned char, h, w)]++;//统计每种颜色的数量
}
}
}
vector<int> v1(colorsum, colorsum+255);//用数组初始化vector
//求出最多数量的染色,注意max_element的使用方法
int maxcolorsum = max_element(v1.begin(), v1.end()) - v1.begin();
printf("%d\n",maxcolorsum);
for (w=0; w<sz.width; w++)
{
for (h=0; h<sz.height; h++)
{
if (CV_IMAGE_ELEM(dst, unsigned char, h, w) == maxcolorsum)
{
CV_IMAGE_ELEM(dst, unsigned char, h, w) = 255;
}
else
{
CV_IMAGE_ELEM(dst, unsigned char, h, w) = 0;
}
}
}
cvNamedWindow("最大连通域图");
cvShowImage("最大连通域图", dst);
cvWaitKey(0);
cvDestroyAllWindows();
cvReleaseImage(&src);
cvReleaseImage(&dst);
return 0;
}
测试图像采用标准的Lena图像,测试结果为:
更多推荐
所有评论(0)