随机过程 Markov 链(中)
随机过程 Markov 链(中)的相关内容,包括极限定理与平稳分布
随机过程 Markov 链(中)
极限定理及平稳分布
极限定理
Th:(基本极限定理)若状态 i i i 是周期为 d d d 的常返状态,则:
lim n → ∞ p i i ( n d ) = d μ i \lim\limits_{n\to\infty}p_{ii}^{(nd)}=\frac{d}{\mu_i} n→∞limpii(nd)=μid
当 i i i 为零常返状态,即 μ i = ∞ \mu_i=\infty μi=∞ 时, d μ i = 0 \frac{d}{\mu_i}=0 μid=0 ;显然,当 i i i 为非常返状态时, ∑ n = 1 ∞ p i i ( n ) < ∞ \sum\limits_{n=1}^{\infty}p_{ii}^{(n)}\lt \infty n=1∑∞pii(n)<∞ ,则 lim n → ∞ p i i ( n ) = 0 \lim\limits_{n\to\infty}p_{ii}^{(n)}=0 n→∞limpii(n)=0 。
没有证明捏 ~( ̄▽ ̄)~*
Th:设 i i i 为常返状态,则:
i 为零常返状态 ⟺ lim n → ∞ p i i ( n ) = 0 i\text{为零常返状态}\iff \lim\limits_{n\to\infty}p_{ii}^{(n)}=0 i为零常返状态⟺n→∞limpii(n)=0
证明:
-
若 i i i 为零常返状态,则 μ i = ∞ \mu_i=\infty μi=∞ ,由上边的定理得 lim n → ∞ p i i ( n d ) = d μ i = 0 \lim\limits_{n\to\infty}p_{ii}^{(nd)}=\frac{d}{\mu_i}=0 n→∞limpii(nd)=μid=0 ,并且当 m m m 不为 d d d 的整数倍时,由周期的定义有 p i i ( m ) = 0 p_{ii}^{(m)}=0 pii(m)=0 ,因此综合两点得到 lim n → ∞ p i i ( n ) = 0 \lim\limits_{n\to\infty}p_{ii}^{(n)}=0 n→∞limpii(n)=0 ;
-
若 lim n → ∞ p i i ( n ) = 0 \lim\limits_{n\to\infty}p_{ii}^{(n)}=0 n→∞limpii(n)=0 ,反证法:设 i i i 为正常返状态,则 μ i < ∞ \mu_i\lt \infty μi<∞ ,故 lim n → ∞ p i i ( n d ) = d μ i > 0 \lim\limits_{n\to\infty}p_{ii}^{(nd)}=\frac{d}{\mu_i}\gt 0 n→∞limpii(nd)=μid>0 ,矛盾。
Th:设 i ↔ j i\leftrightarrow j i↔j 且为常返状态(上一节的定理,常返状态是个类性质),当 i i i 为零常返状态时, j j j 也为零常返状态(即零常返也是类性质)
证明:有:
p i i ( m + n + l ) ≥ p i j ( n ) p j j ( l ) p j i ( m ) ≥ 0 p_{ii}^{(m+n+l)}\geq p_{ij}^{(n)}p_{jj}^{(l)}p_{ji}^{(m)}\geq 0 pii(m+n+l)≥pij(n)pjj(l)pji(m)≥0
令 l → ∞ l\to\infty l→∞ ,则由上面的定理知,因为 i i i 是零常返状态,所以 lim l → ∞ p i i ( m + n + l ) = 0 \lim\limits_{l\to\infty}p_{ii}^{(m+n+l)}=0 l→∞limpii(m+n+l)=0 ,因此:
0 ≥ p j j ( l ) ≥ 0 0\geq p_{jj}^{(l)} \geq 0 0≥pjj(l)≥0
即 lim l → ∞ p j j ( l ) = 0 \lim\limits_{l\to\infty}p_{jj}^{(l)}=0 l→∞limpjj(l)=0 ,因此 j j j 也是零常返状态,得证。
Th:接下来我们讨论 p i j ( n ) p_{ij}^{(n)} pij(n) 的极限性质:
- 若 j j j 为非常返状态或零常返状态,则对 ∀ i ∈ S \forall i \in S ∀i∈S ,有:
lim n → ∞ p i j ( n ) = 0 \lim\limits_{n\to\infty}p_{ij}^{(n)}=0 n→∞limpij(n)=0
- 若 Markov 链为不可约、正常返,且非周期,则对于 ∀ i , j ∈ S \forall i,\,j\,\in S ∀i,j∈S ,有:
lim n → ∞ p i j ( n ) = 1 μ j \lim\limits_{n\to\infty}p_{ij}^{(n)}=\frac{1}{\mu_j} n→∞limpij(n)=μj1
证明:(1)由前边转移概率和首达概率的关系有: p i j ( n ) = ∑ l = 1 n f i j ( l ) p j j ( n − l ) p_{ij}^{(n)}=\sum\limits_{l=1}^n f_{ij}^{(l)}p_{jj}^{(n-l)} pij(n)=l=1∑nfij(l)pjj(n−l) ,对 N < n N\lt n N<n ,有:(因为总有 p j j n ≤ 1 p_{jj}^{n}\leq 1 pjjn≤1 )
∑ l = 1 n f i j ( l ) p j j ( n − l ) ≤ ∑ l = 1 N f i j ( l ) p j j ( n − l ) + ∑ l = N + 1 n f i j ( l ) \sum\limits_{l=1}^n f_{ij}^{(l)}p_{jj}^{(n-l)} \leq \sum\limits_{l=1}^N f_{ij}^{(l)}p_{jj}^{(n-l)}+\sum\limits_{l=N+1}^{n}f_{ij}^{(l)} l=1∑nfij(l)pjj(n−l)≤l=1∑Nfij(l)pjj(n−l)+l=N+1∑nfij(l)
首先固定 N N N ,令 n → ∞ n\to\infty n→∞ :
- 若 j j j 为非常返状态,由于 lim n → ∞ ∑ i = 1 n p j j ( i ) < ∞ \lim\limits_{n\to\infty}\sum\limits_{i=1}^{n}p_{jj}^{(i)}\lt \infty n→∞limi=1∑npjj(i)<∞ ,因此 lim n → ∞ p j j ( n ) = 0 \lim\limits_{n\to\infty}p_{jj}^{(n)}=0 n→∞limpjj(n)=0 ,故 lim n → ∞ ∑ l = 1 N f i j ( l ) p j j ( n − l ) = 0 \lim\limits_{n\to\infty}\sum\limits_{l=1}^N f_{ij}^{(l)}p_{jj}^{(n-l)}=0 n→∞liml=1∑Nfij(l)pjj(n−l)=0 ;
- 若 j j j 为零常返状态,由上面的定理可知, lim n → ∞ p j j ( n ) = 0 \lim\limits_{n\to\infty}p_{jj}^{(n)}=0 n→∞limpjj(n)=0 ,故 lim n → ∞ ∑ l = 1 N f i j ( l ) p j j ( n − l ) = 0 \lim\limits_{n\to\infty}\sum\limits_{l=1}^N f_{ij}^{(l)}p_{jj}^{(n-l)}=0 n→∞liml=1∑Nfij(l)pjj(n−l)=0 ;
所以得到:
p i j ( n ) = ∑ l = 1 n f i j ( l ) p j j ( n − l ) ≤ ∑ l = N + 1 n f i j ( l ) p_{ij}^{(n)}=\sum\limits_{l=1}^n f_{ij}^{(l)}p_{jj}^{(n-l)} \leq \sum\limits_{l=N+1}^{n}f_{ij}^{(l)} pij(n)=l=1∑nfij(l)pjj(n−l)≤l=N+1∑nfij(l)
由于 ∑ l = 1 ∞ f i j ( l ) ≤ 1 < ∞ \sum\limits_{l=1}^{\infty}f_{ij}^{(l)}\leq 1\lt \infty l=1∑∞fij(l)≤1<∞ ,所以 lim l → ∞ f i j ( l ) = 0 \lim\limits_{l\to\infty}f_{ij}^{(l)}=0 l→∞limfij(l)=0 ,因此再令 N → ∞ N\to\infty N→∞ ,则 ∑ l = N + 1 n f i j ( l ) → 0 \sum\limits_{l=N+1}^{n}f_{ij}^{(l)}\to 0 l=N+1∑nfij(l)→0 ,故:
lim n → ∞ p i j ( n ) ≤ 0 ⇒ lim n → ∞ p i j ( n ) = 0 \lim\limits_{n\to\infty}p_{ij}^{(n)}\leq 0 \Rightarrow \lim\limits_{n\to\infty}p_{ij}^{(n)}=0 n→∞limpij(n)≤0⇒n→∞limpij(n)=0
(2)利用(1)中的式子可以得到:
∑ l = 1 N f i j ( l ) p j j ( n − l ) ≤ p i j ( n ) ≤ ∑ l = 1 N f i j ( l ) p j j ( n − l ) + ∑ l = N + 1 n f i j ( l ) \sum\limits_{l=1}^N f_{ij}^{(l)}p_{jj}^{(n-l)} \leq p_{ij}^{(n)} \leq \sum\limits_{l=1}^N f_{ij}^{(l)}p_{jj}^{(n-l)} + \sum\limits_{l=N+1}^n f_{ij}^{(l)} l=1∑Nfij(l)pjj(n−l)≤pij(n)≤l=1∑Nfij(l)pjj(n−l)+l=N+1∑nfij(l)
先固定 N N N ,令 n → ∞ n\to\infty n→∞ ,由于 j j j 是正常返、周期为 1 1 1 的状态,由这一节的第一个定理可以得到: lim n → ∞ p j j n = 1 μ j \lim\limits_{n\to\infty}p_{jj}^{n}=\frac{1}{\mu_j} n→∞limpjjn=μj1 ,即:
1 μ j ∑ l = 1 N f i j ( l ) ≤ p i j ( n ) ≤ 1 μ j ∑ l = 1 N f i j ( l ) + ∑ l = N + 1 n f i j ( l ) \frac{1}{\mu_j}\sum\limits_{l=1}^N f_{ij}^{(l)} \leq p_{ij}^{(n)} \leq \frac{1}{\mu_j}\sum\limits_{l=1}^N f_{ij}^{(l)} + \sum\limits_{l=N+1}^n f_{ij}^{(l)} μj1l=1∑Nfij(l)≤pij(n)≤μj1l=1∑Nfij(l)+l=N+1∑nfij(l)
又令 N → ∞ N\to\infty N→∞ ,由于这个 Markov 链是不可约的,因此 i ↔ j i\leftrightarrow j i↔j ,故 f i j = 1 f_{ij}=1 fij=1 ,且由(1)中证明可以得到 ∑ l = N + 1 n f i j ( l ) → 0 \sum\limits_{l=N+1}^{n}f_{ij}^{(l)}\to 0 l=N+1∑nfij(l)→0 ,故:
1 μ j ≤ lim n → ∞ p i j ( n ) ≤ 1 μ j ⇒ lim n → ∞ p i j ( n ) = 1 μ j \frac{1}{\mu_j}\leq \lim\limits_{n\to\infty}p_{ij}^{(n)}\leq \frac{1}{\mu_j} \Rightarrow \lim\limits_{n\to\infty}p_{ij}^{(n)}= \frac{1}{\mu_j} μj1≤n→∞limpij(n)≤μj1⇒n→∞limpij(n)=μj1
Th:状态有限的 Markov 链,不可能全为非常返状态,也不可能有零常返状态;从而不可约的有限 Markov 链是正常返的。
证明:(1)反证法,若状态空间为 S = { 1 , 2 , ⋯ , N } S=\{1,\,2,\,\cdots,\,N\} S={1,2,⋯,N} 的 Markov 链全为非常返状态,则:
- 若 i → j i\to j i→j ,由前面定理的(2)得到, p i j ( n ) → 1 μ j = 0 p_{ij}^{(n)}\to\frac{1}{\mu_j}=0 pij(n)→μj1=0 ( n → ∞ n\to\infty n→∞);
- 若 i ↛ j i\not\to j i→j ,则显然 p i j ( n ) = 0 p_{ij}^{(n)}=0 pij(n)=0 ;
即对任意 i i i ,当 n → ∞ n\to\infty n→∞ 时都有 ∑ j = 1 N p i j ( n ) = 0 \sum\limits_{j=1}^{N} p_{ij}^{(n)}=0 j=1∑Npij(n)=0 ;但是显然只有这 N N N 个状态,因此 ∑ j = 1 N p i j ( n ) = 1 \sum\limits_{j=1}^N p_{ij}^{(n)}=1 j=1∑Npij(n)=1 ,矛盾,因此不可能全为非常返状态;
(2)若 S S S 中有零常返状态,设为 i i i ,令 C = { j ∣ i → j } C=\{j\,|\,i\to j\} C={j∣i→j} ,有 ∑ j ∈ C p i j ( n ) = 1 \sum\limits_{j\in C}p_{ij}^{(n)}=1 j∈C∑pij(n)=1 ;由 i i i 为常返状态得,由于 i i i 是常返状态,所以 f i i = 1 f_{ii}=1 fii=1 ,又因为 C C C 中状态有限,所以这个概率为 1 代表必然事件,即从 i i i 出发,在有限步内必然可以回到 i i i 。因此对于 ∀ j ∈ C \forall j\in C ∀j∈C ,都有 j → i j\to i j→i 。故 i ↔ j i\leftrightarrow j i↔j ,又因为零常返是类性质,因此 j j j 也是零常返状态,则由前面一个定理的(1)得到 lim n → ∞ p i j ( n ) = 0 \lim\limits_{n\to\infty}p_{ij}^{(n)}=0 n→∞limpij(n)=0 。故当 n → ∞ n\to\infty n→∞ 时,有 ∑ j ∈ C p i j ( n ) = 0 \sum\limits_{j\in C}p_{ij}^{(n)}=0 j∈C∑pij(n)=0 ,与 ∑ j ∈ C p i j ( n ) = 1 \sum\limits_{j\in C}p_{ij}^{(n)}=1 j∈C∑pij(n)=1 矛盾。因此 S S S 中不存在零常返状态。
Th:若 Markov 链有一个零常返状态,则必有无限多个零常返状态。
证明:这是一个推论,和前面一个定理一样,如果只有有限多个零常返状态,则可以推出 ∑ j ∈ C p i j ( n ) = 0 \sum\limits_{j\in C}p_{ij}^{(n)}=0 j∈C∑pij(n)=0 与 ∑ j ∈ C p i j ( n ) = 1 \sum\limits_{j\in C}p_{ij}^{(n)}=1 j∈C∑pij(n)=1 矛盾
例:设 Markov 链的转移矩阵为:
P = [ 1 − p p q 1 − q ] 0 < p , q < 1 P=\begin{bmatrix} 1-p & p \\ q & 1-q \end{bmatrix} \quad 0\lt p,\,q \lt 1 P=[1−pqp1−q]0<p,q<1
解:对于极限转移概率,需要考虑 P n P^n Pn( n → ∞ n\to\infty n→∞),对 P P P 进行特征值分解,得到:
P = Q D Q − 1 D = [ 1 0 0 1 − p − q ] Q = [ 1 − p 1 q ] Q − 1 = [ q p + q p p + q − 1 p + q 1 p + q ] P=QDQ^{-1} \quad D=\begin{bmatrix} 1 & 0 \\ 0 & 1-p-q \end{bmatrix} \quad Q=\begin{bmatrix} 1 & -p \\ 1 & q \end{bmatrix} \quad Q^{-1}=\begin{bmatrix} \frac{q}{p+q} & \frac{p}{p+q} \\ -\frac{1}{p+q} & \frac{1}{p+q} \end{bmatrix} P=QDQ−1D=[1001−p−q]Q=[11−pq]Q−1=[p+qq−p+q1p+qpp+q1]
则:
P n = Q D Q − 1 Q D Q − 1 ⋯ Q D Q − 1 = Q D n Q − 1 = [ q + p ( 1 − p − q ) n p + q p − p ( 1 − p − q ) n p + q q − q ( 1 − p − q ) n p + q p + q ( 1 − p − q ) n p + q ] P^n=QDQ^{-1}QDQ^{-1}\cdots QDQ^{-1}=QD^{n}Q^{-1}= \begin{bmatrix} \frac{q+p(1-p-q)^n}{p+q} & \frac{p-p(1-p-q)^n}{p+q} \\ \frac{q-q(1-p-q)^n}{p+q} & \frac{p+q(1-p-q)^n}{p+q} \end{bmatrix} Pn=QDQ−1QDQ−1⋯QDQ−1=QDnQ−1=[p+qq+p(1−p−q)np+qq−q(1−p−q)np+qp−p(1−p−q)np+qp+q(1−p−q)n]
故:
lim n → ∞ P n = [ q p + q p p + q q p + q p p + q ] \lim\limits_{n\to\infty}P^{n}=\begin{bmatrix} \frac{q}{p+q} & \frac{p}{p+q} \\ \frac{q}{p+q} & \frac{p}{p+q} \end{bmatrix} n→∞limPn=[p+qqp+qqp+qpp+qp]
可见此 Markov 链的 n n n 步转移概率的极限存在。
例:设 Markov 的状态空间 S = { 1 , 2 , 3 , 4 , 5 } S=\{1,\,2,\,3,\,4,\,5\} S={1,2,3,4,5} ,转移矩阵为:
P = [ 1 0 0 0 0 0 1 0 0 0 1 2 0 0 1 2 0 0 0 1 2 0 1 2 0 1 2 0 1 2 0 ] P=\begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ \frac{1}{2} & 0 & 0 & \frac{1}{2} & 0 \\ 0 & 0 & \frac{1}{2} & 0 & \frac{1}{2} \\ 0 & \frac{1}{2} & 0 & \frac{1}{2} & 0 \\ \end{bmatrix} P=
1021000100210002100021021000210
试确定常返状态、瞬过状态(即非常返状态),并对常返状态 i i i 确定其平均回转时间 μ i \mu_i μi ;
解:画出状态转移图:
显然状态 1、2 的周期为 1,3、4、5 的周期为 2;用分块矩阵计算,可以得到:
$$
\lim\limits_{n\to\infty}P^n=\begin{bmatrix}
1 & 0 & 0 & 0 & 0 \
0 & 1 & 0 & 0 & 0 \
- & * & 0 & 0 & 0 \
- & * & 0 & 0 & 0 \
- & * & 0 & 0 & 0 \
\end{bmatrix}
$$
从而 1 1 1 和 2 2 2 为正常返状态,3、4、5 为非常返状态。 由这节开头的极限定理可知 lim n → ∞ p i i ( n d ) = d μ i \lim\limits_{n\to\infty}p_{ii}^{(nd)}=\frac{d}{\mu_i} n→∞limpii(nd)=μid ,因此 μ 1 = μ 2 = 1 \mu_1=\mu_2=1 μ1=μ2=1 (由定义也可以知道,状态 1 或 2 平均一步就可以返回原来的状态)。此 Markov 链可以分为三类: { 1 } \{1\} {1} { 2 } \{2\} {2} { 3 , 4 , 5 } \{3,\,4,\,5\} {3,4,5}
平稳分布与极限分布
平稳分布:对于 Markov 链,概率分布 { p j , j ∈ S } \{p_j,\,j\in S\} {pj,j∈S} 称为平稳分布,若:
p j = ∑ i ∈ S p i p i j p_j=\sum\limits_{i\in S} p_ip_{ij} pj=i∈S∑pipij
若 Markov 的初始分布 P ( X 0 = j ) = p j j ∈ S P(X_0=j)=p_j\quad j\in S P(X0=j)=pjj∈S 是平稳分布,则:
p ( X 1 = j ) = ∑ i ∈ S P ( X 1 = j ∣ X 0 = i ) ⋅ P ( X 0 = i ) = ∑ i ∈ S p i j p i = p j \begin{align} p(X_1=j)=&\,\sum\limits_{i\in S}P(X_1=j|X_0=i)\cdot P(X_0=i) \\ =&\,\sum\limits_{i\in S}p_{ij}p_{i} \\ =&\,p_j \end{align} p(X1=j)===i∈S∑P(X1=j∣X0=i)⋅P(X0=i)i∈S∑pijpipj
得到任意 X i X_i Xi 都有着相同的分布,这就是为什么称为平稳分布。
遍历:如果所有状态相通(即不可约)且均是周期为 1 1 1 (即非周期)的正常返状态,则称 Markov 链是遍历的;
- 遍历的 Markov 链:不可约、正常返、非周期
极限分布:对于遍历的 Markov 链,极限:
lim n → ∞ p i j ( n ) = π j \lim\limits_{n\to\infty}p_{ij}^{(n)}=\pi_{j} n→∞limpij(n)=πj
称为 Markov 的极限分布;由上一节的极限定理可知, π j = 1 μ j \pi_j=\frac{1}{\mu_j} πj=μj1 ;
下面的定理说明对于遍历的 Markov 链,极限分布就是平稳分布,并且是唯一的平稳分布。
Th:对于不可约非周期的 Markov 链:
- 若它是遍历的,则 KaTeX parse error: Expected group after '_' at position 11: \pi_j=\lim_̲\limits{n\to\in… ( j ∈ S j\in S j∈S) 是平稳分布,并且是唯一的平稳分布;
- 若状态都是瞬过的或全为零常返的(肯定是无穷多个状态),则平稳分布不存在;
证明:
(1)对于遍历的 Markov 链,由上一节的极限定理可知, π j = 1 μ j \pi_j=\frac{1}{\mu_j} πj=μj1 是存在的,首先证明 { π j , j ∈ S } \{\pi_j,\,j\in S\} {πj,j∈S} 是平稳分布。由于 ∑ j ∈ S p i j ( n ) = 1 \sum\limits_{j\in S}p_{ij}^{(n)}=1 j∈S∑pij(n)=1 ,有:
lim n → ∞ ∑ j ∈ S p i j ( n ) = 1 \lim\limits_{n\to\infty}\sum\limits_{j\in S}p_{ij}^{(n)}=1 n→∞limj∈S∑pij(n)=1
显然式中的极限和求和可以交换顺序,得到:
∑ j ∈ S π j = 1 \sum\limits_{j\in S}\pi_j=1 j∈S∑πj=1
由 C-K 方程得到:
p i j ( n + 1 ) = ∑ k ∈ S p i k ( n ) p k j p_{ij}^{(n+1)}=\sum\limits_{k\in S}p_{ik}^{(n)}p_{kj} pij(n+1)=k∈S∑pik(n)pkj
两边对 n n n 取极限得到:
π j = lim n → ∞ p i j ( n + 1 ) = lim n → ∞ ∑ k ∈ S p i k ( n ) p k j = ∑ k ∈ S lim n → ∞ ( p i k ( n ) ) p k j = ∑ k ∈ S π k p k j \pi_j=\lim\limits_{n\to\infty}p_{ij}^{(n+1)} =\lim\limits_{n\to\infty}\sum\limits_{k\in S}p_{ik}^{(n)}p_{kj} =\sum\limits_{k\in S}\lim\limits_{n\to\infty}\left(p_{ik}^{(n)}\right)p_{kj} =\sum\limits_{k\in S}\pi_kp_{kj} πj=n→∞limpij(n+1)=n→∞limk∈S∑pik(n)pkj=k∈S∑n→∞lim(pik(n))pkj=k∈S∑πkpkj
即 π j = ∑ k ∈ S π k p k j \pi_j=\sum\limits_{k\in S}\pi_kp_{kj} πj=k∈S∑πkpkj ,从而 { π j , j ∈ S } \{\pi_j,\,j\in S\} {πj,j∈S} 是平稳分布。
再证明 { π j , j ∈ S } \{\pi_j,\,j\in S\} {πj,j∈S} 是唯一的平稳分布。设还有另一个平稳分布 { π ~ j , j ∈ S } \{\tilde\pi_j,\,j\in S\} {π~j,j∈S} ,则由 π ~ j = ∑ k ∈ S π ~ k p k j \tilde\pi_j=\sum\limits_{k\in S}\tilde\pi_kp_{kj} π~j=k∈S∑π~kpkj 归纳得到:
π ~ j = ∑ k ∈ S π ~ k p k j ( n ) , n = 1 , 2 , ⋯ \tilde\pi_j=\sum\limits_{k\in S}\tilde\pi_kp_{kj}^{(n)},\,n=1,\,2,\,\cdots π~j=k∈S∑π~kpkj(n),n=1,2,⋯
两边对 n n n 取极限得到:
π ~ j = ∑ k ∈ S π ~ k lim n → ∞ p k j ( n ) = ∑ k ∈ S π ~ k π j \tilde\pi_j=\sum\limits_{k\in S}\tilde\pi_k\lim\limits_{n\to\infty}p_{kj}^{(n)}=\sum\limits_{k\in S}\tilde\pi_k\pi_j π~j=k∈S∑π~kn→∞limpkj(n)=k∈S∑π~kπj
由上面的证明可知 ∑ k ∈ S π ~ k = 1 \sum\limits_{k\in S}\tilde \pi_k=1 k∈S∑π~k=1 ,因此 π ~ j = π j \tilde\pi_j=\pi_j π~j=πj ,所以得证平稳分布唯一。
(2)反证法:假设存在一个平稳分布 { π j , j ∈ S } \{\pi_j,\,j\in S\} {πj,j∈S} ,则由(1)中证明得到:
π j = ∑ k ∈ S π k p k j ( n ) , n = 1 , 2 , ⋯ \pi_j=\sum\limits_{k\in S}\pi_kp_{kj}^{(n)},\,n=1,\,2,\,\cdots πj=k∈S∑πkpkj(n),n=1,2,⋯
j j j 为非常返或者零常返状态,当 n → ∞ n\to\infty n→∞ 时,由上一节的 p k j ( n ) p_{kj}^{(n)} pkj(n) 的极限性质得, lim n → ∞ p k j ( n ) = 0 \lim\limits_{n\to\infty}p_{kj}^{(n)}=0 n→∞limpkj(n)=0 ,因此 π j = 0 \pi_j=0 πj=0 ( ∀ j ∈ S \forall j\in S ∀j∈S),但是这个是不可能的,因此对于非常返的或者零常返的 Markov 链,不存在平稳分布。
注意:
- 不可约、非周期的 Markov 链,只要有一个是正常返状态,就全是正常返状态;只要有一个是非常返状态,就全是非常返状态;只要有一个是零常返状态,就全是零常返状态。所有说这个定理的两种情况已经包括了所有的不可约、非周期的 Markov 链;
- π j = 1 μ j \pi_j=\frac{1}{\mu_j} πj=μj1 是一种简便计算状态的平均回转时间的方法;
下面的例子你可以看到,往往是直接解对应的线性方程组来得到平稳分布。
例:设甲袋中有 k k k 个白球和 1 1 1 个黑球,乙袋中有 k + 1 k+1 k+1 个白球,每次从两袋中任取一球,交换后放入对方的袋中。证明经过 n n n 次交换后,黑球仍在甲袋中的概率 p n p_n pn 满足 lim n → ∞ p = 1 2 \lim\limits_{n\to\infty}p=\frac{1}{2} n→∞limp=21 ;
解:以 X n X_n Xn 表示第 n n n 次取球后甲袋中的黑球数,则 { X n , n = 1 , 2 , ⋯ } \{X_n,\,n=1,\,2,\,\cdots\} {Xn,n=1,2,⋯} 是状态空间为 S = { 0 , 1 } S=\{0,\,1\} S={0,1} 的时齐 Markov 链,一步转移矩阵为:
P = [ k k + 1 1 k + 1 1 k + 1 k k + 1 ] P=\begin{bmatrix} \frac{k}{k+1} & \frac{1}{k+1} \\ \frac{1}{k+1} & \frac{k}{k+1} \\ \end{bmatrix} P=[k+1kk+11k+11k+1k]
它的平稳分布满足:
{ π 0 = k k + 1 π 0 + 1 k + 1 π 1 π 1 = 1 k + 1 π 0 + k k + 1 π 1 \left\{ \begin{array}{l} \pi_0=\frac{k}{k+1}\pi_0+\frac{1}{k+1}\pi_1 \\ \pi_1=\frac{1}{k+1}\pi_0+\frac{k}{k+1}\pi_1 \end{array} \right. {π0=k+1kπ0+k+11π1π1=k+11π0+k+1kπ1
且有规范性条件 π 0 + π 1 = 1 \pi_0+\pi_1=1 π0+π1=1 ,解得 π = ( π 0 , π 1 ) = ( 1 2 , 1 2 ) \pi=(\pi_0,\,\pi_1)=(\frac{1}{2},\,\frac{1}{2}) π=(π0,π1)=(21,21) ,故经过 n n n 次交换过后,黑球仍在甲袋中的概率为:
lim n → ∞ p n = lim n → ∞ P ( X n = 1 ) = π 1 = 1 2 \lim\limits_{n\to\infty}p_n=\lim\limits_{n\to\infty}P(X_n=1)=\pi_1=\frac{1}{2} n→∞limpn=n→∞limP(Xn=1)=π1=21
例:某种商品的销售情况共有连续 24 个季度的数据(其中 1 表示畅销,2 表示滞销):
1 1 2 1 2 2 1 1 1 2 1 2 1 1 2 2 1 1 2 1 2 1 1 1 \begin{array}{} 1 & 1 & 2 & 1 & 2 & 2 & 1 & 1 & 1 & 2 & 1 & 2 & 1 & 1 & 2 & 2 & 1 & 1 & 2 & 1 & 2 & 1 & 1 & 1 \end{array} 112122111212112211212111
如果该商品的销售情况近似满足时齐性于 Markov 性:
(1)试确定销售状态的一步转移概率矩阵;
(2)如果现在是畅销,试预测之后的第四个季度的销售状况;
(3)如果影响销售的所有因素不变,试预测长期的销售状况;
解:以 X n X_n Xn 表示第 n n n 季度该商品的销售状况,则 { X n , n = 1 , 2 , ⋯ } \{X_n,\,n=1,\,2,\,\cdots\} {Xn,n=1,2,⋯} 为状态空间为 S = { 1 , 2 } S=\{1,\,2\} S={1,2} 的时齐 Markov 链。
(1)由 1 → 1 1\to 1 1→1 有 7 7 7 次, 1 → 2 1\to 2 1→2 有 7 7 7 次,故 p 11 = p 12 = 1 2 p_{11}=p_{12}=\frac{1}{2} p11=p12=21 ;由 2 → 1 2\to 1 2→1 有 7 7 7 次, 2 → 2 2\to 2 2→2 有 2 2 2 次,故 p 21 = 7 9 p_{21}=\frac{7}{9} p21=97 , p 22 = 2 9 p_{22}=\frac{2}{9} p22=92 ;一步转移矩阵为:
P = [ 1 2 1 2 7 9 2 9 ] P=\begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{7}{9} & \frac{2}{9} \\ \end{bmatrix} P=[21972192]
(2)有:
P ( 4 ) = P 4 = [ 0.611 0.389 0.605 0.395 ] P^{(4)}=P^4=\begin{bmatrix} 0.611 & 0.389 \\ 0.605 & 0.395 \\ \end{bmatrix} P(4)=P4=[0.6110.6050.3890.395]
如果现在是畅销,则四个季度之后该商品以 0.611 的概率畅销;
(3)由平稳方程 ( π 0 , π 1 ) = ( π 0 , π 1 ) P (\pi_0,\,\pi_1)=(\pi_0,\,\pi_1)P (π0,π1)=(π0,π1)P 和规范性条件 π 0 + π 1 = 1 \pi_0+\pi_1=1 π0+π1=1 得到:
{ π 0 = 1 2 π 0 + 7 9 π 1 π 1 = 1 2 π 0 + 2 9 π 1 π 0 + π 1 = 1 \left\{ \begin{array}{l} \pi_0=\frac{1}{2}\pi_0+\frac{7}{9}\pi_1 \\ \pi_1=\frac{1}{2}\pi_0+\frac{2}{9}\pi_1 \\ \pi_0+\pi_1=1 \end{array} \right. ⎩
⎨
⎧π0=21π0+97π1π1=21π0+92π1π0+π1=1
解得 π = ( π 0 , π 1 ) = ( 14 23 , 9 23 ) \pi=(\pi_0,\,\pi_1)=(\frac{14}{23},\,\frac{9}{23}) π=(π0,π1)=(2314,239) ,即长期下去,该商品将以 14 23 \frac{14}{23} 2314 的概率畅销。
更多推荐


所有评论(0)