波束形成 Lawson近似下的旁瓣抑制波束图设计
一种快速旁瓣波束图设计法
·
旁瓣抑制类的核心目标是将旁瓣角度域上的波束图输出响应最小化,其优化问题可表示为:
通过加权求和的形式,将一个既凸又凹的min-max联合问题松弛为了一个凸问题,即:
其中为每个离散角度点对应的权向量。该问题可通过Lawson近似进行求解。Lawson近似是针对min-max类优化问题的最佳近似手段,以该优化问题为例,其Lawson近似步骤如下:
- 初始化旁瓣区域的所有角度
的Lawson权值
为1。
第次迭代时:
- 对协方差阵
进行LCMV求解权向量,有:
其闭式解析解为:
- 根据上一式得到的权向量,计算Lawson近似加权系数,有:
1-D情况下
%% 初始化及设定参数
array_num = 32;%%阵元数
snapshot_num = 100;%%快拍数
source_aoa = [-30,-5,45];%%信源到达角
target_aoa = -30;
c = 340;%%波速
f = 1000;%%频率
lambda = c/f;%%波长
d = 0.5*lambda;
source_num = length(source_aoa);%%信源数
sig_nr = [20,20,20];%%信噪比、扰噪比
reso = 2;%%网格分辨率
reso_grid = (-90:reso:90)';%%先验网格
reso_num = length(reso_grid);%%网格数
%% 导向矢量
X = zeros(source_num,snapshot_num);
A = exp(-1i*(0:array_num-1)'*2*pi*(d/lambda)*sind(source_aoa));%%阵列响应矩阵
for ik = 1:length(sig_nr)
X(ik,:) = sqrt(10^(sig_nr(ik)/10))*(randn(1,snapshot_num)+randn(1,snapshot_num)*1i);
end
n = (randn(array_num,snapshot_num)+randn(array_num,snapshot_num)*1i)/sqrt(2);
Y = A*X+n;
R = Y*Y';
max_iter = 100;
deg_sample = 0.5;
deg_array = [-90:deg_sample:target_aoa-10,target_aoa+10:deg_sample:90-deg_sample];
v = ones(1,length(deg_array));
g = [1,0,0];
for ik = 1:max_iter
w0 = inv(R)*A/(A'*inv(R)*A)*g';
v_sum = 0;
for jk = 1:length(deg_array)
v_sum = v_sum+v(jk)*abs(w0'*exp(-1i*(0:array_num-1)'*2*pi*(d/lambda)*sind(deg_array(jk))))^2;
end
for jk = 1:length(deg_array)
v(jk) = v(jk)*abs(w0'*exp(-1i*(0:array_num-1)'*2*pi*(d/lambda)*sind(deg_array(jk))))^2/v_sum;
end
R = zeros(array_num,array_num);
for jk = 1:length(deg_array)
sv = exp(-1i*(0:array_num-1)'*2*pi*(d/lambda)*sind(deg_array(jk)));
R = R+v(jk)*(sv*sv');
end
end
beam_plot(w0);
function [] = beam_plot(input_weight_vector)
array_num = length(input_weight_vector);
theta = -90:0.01:90;
p = exp(-1j*2*pi*(0:array_num-1)'*sind(theta)/2);
y = input_weight_vector'*p;
outputval = 20*log10(abs(y)/max(abs(y)));
figure()
plot(theta,outputval,'LineWidth',2);
end

参考文献
梁军利,涂宇,马云红等.任务驱动的自组织蜂群柔性阵列波束赋形算法研究[J].雷达学报,2022,11(04):517-529.
更多推荐



所有评论(0)