泰勒展开与黑塞矩阵(Hessian Matrix)
黑塞矩阵(Hessian Matrix),又译作海森矩阵、海瑟矩阵、海塞矩阵等,是一个多元函数的二阶偏导数构成的方阵,描述了函数的局部曲率。黑塞矩阵最早于19世纪由德国数学家Ludwig Otto Hesse提出,并以其名字命名。黑塞矩阵常用于牛顿法解决优化问题,利用黑塞矩阵可判定多元函数的极值问题。在工程实际问题的优化设计中,所列的目标函数往往很复杂,为了使问题简化,常常将目标函数在某点邻域展开
黑塞矩阵(Hessian Matrix),又译作海森矩阵、海瑟矩阵、海塞矩阵等,是一个多元函数的二阶偏导数构成的方阵,描述了函数的局部曲率。黑塞矩阵最早于19世纪由德国数学家Ludwig Otto Hesse提出,并以其名字命名。黑塞矩阵常用于牛顿法解决优化问题,利用黑塞矩阵可判定多元函数的极值问题。在工程实际问题的优化设计中,所列的目标函数往往很复杂,为了使问题简化,常常将目标函数在某点邻域展开成泰勒多项式来逼近原函数,此时函数在某点泰勒展开式的矩阵形式中会涉及到黑塞矩阵。
在工程实际问题的优化设计中,所列的目标函数往往很复杂,为了使问题简化,常常将目标函数在某点邻域展开成泰勒多项式来逼近原函数。
二元函数的黑塞矩阵
根据高等数学知识,若一元函数 f(x)f(x)f(x) 在 x=x(0)x=x^{(0)}x=x(0) 点某个领域内具有任意阶导数,则 f(x)f(x)f(x) 在 x(0)x^{(0)}x(0)处的泰勒展开式为
f(x)=f(x(0))+f′(x(0))Δx+12f′′(x(0))(Δx)2+... f(x)=f(x^{(0)})+f^\prime(x^{(0)})\Delta x+\frac{1}{2}f^{\prime\prime}(x^{(0)})(\Delta x)^2+... f(x)=f(x(0))+f′(x(0))Δx+21f′′(x(0))(Δx)2+...
其中 Δx=x−x(0),Δx2=(x−x(0))2\Delta x=x-x^{(0)}, \Delta x^2=(x-x^{(0)})^2Δx=x−x(0),Δx2=(x−x(0))2
对于二元函数 f(x1,x2)f(x_1, x_2)f(x1,x2) 在X(0)(x1(0),x2(0))X^{(0)}(x_1^{(0)}, x_2^{(0)})X(0)(x1(0),x2(0)) 点处的泰勒展开式为:
f(x1,x2)=f(x1(0),x2(0))+∂f∂x1∣X(0)Δx1+∂f∂x2∣X(0)Δx2+12[∂2f∂x12∣X(0)Δx12+2∂2f∂x1∂x2∣X(0)Δx1Δx2+∂2f∂x22∣X(0)Δx22]+... f(x_1,x_2)=f(x_1^{(0)}, x_2^{(0)})+\frac{\partial f}{\partial x_1}\bigg |_{X^{(0)}}\Delta x_1+\frac{\partial f}{\partial x_2}\bigg |_{X^{(0)}} \Delta x_2+\frac{1}{2}[\frac{\partial^2 f}{\partial x_1^2}\bigg |_{X^{(0)}}\Delta x_1^2+2\frac{\partial^2 f}{\partial x_1\partial x_2}\bigg |_{X^{(0)}}\Delta x_1\Delta x_2+\frac{\partial^2 f}{\partial x_2^2}\bigg |_{X^{(0)}}\Delta x_2^2]+... f(x1,x2)=f(x1(0),x2(0))+∂x1∂f∣∣∣∣X(0)Δx1+∂x2∂f∣∣∣∣X(0)Δx2+21[∂x12∂2f∣∣∣∣X(0)Δx12+2∂x1∂x2∂2f∣∣∣∣X(0)Δx1Δx2+∂x22∂2f∣∣∣∣X(0)Δx22]+...
其中Δx1=x1−x1(0),Δx2=x2−x2(0)\Delta x_1=x_1-x_1^{(0)}, \Delta x_2=x_2-x_2^{(0)}Δx1=x1−x1(0),Δx2=x2−x2(0)
将上述展开式写成矩阵形式,则有:
f(X)=f(X(0))+(∂f∂x1,∂f∂x2)X(0)(Δx1Δx2)+12(Δx1,Δx2)(∂2f∂x12∂2f∂x1∂x2∂2f∂x2∂x1∂2f∂x22)∣X(0)(Δx1Δx2)+... f(X)=f(X^{(0)})+(\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2})_{X_{(0)}}\dbinom{\Delta x_1}{\Delta x_2}+\frac{1}{2}(\Delta x_1, \Delta x_2)\begin{pmatrix}\frac{\partial^2 f}{\partial x_1^2}&\frac{\partial^2f}{\partial x_1\partial x_2}\\ \frac{\partial^2f}{\partial x_2\partial x_1}&\frac{\partial^2 f}{\partial x_2^2}\end{pmatrix}\bigg|_{X^{(0)}}\dbinom{\Delta x_1}{\Delta x_2}+... f(X)=f(X(0))+(∂x1∂f,∂x2∂f)X(0)(Δx2Δx1)+21(Δx1,Δx2)(∂x12∂2f∂x2∂x1∂2f∂x1∂x2∂2f∂x22∂2f)∣∣∣∣X(0)(Δx2Δx1)+...
即:
f(X)=f(X(0))+Δf(X(0))TΔX+12ΔXTG(X(0))ΔX+... f(X)=f(X^{(0)})+\Delta f(X^{(0)})^T\Delta X+\frac{1}{2}\Delta X^TG(X^{(0)})\Delta X+... f(X)=f(X(0))+Δf(X(0))TΔX+21ΔXTG(X(0))ΔX+...
其中
G(X(0))=(∂2f∂x12∂2f∂x1∂x2∂2f∂x2∂x1∂2f∂x22)∣X(0),ΔX=(Δx1Δx2) G(X^{(0)})=\begin{pmatrix}\frac{\partial^2 f}{\partial x_1^2}&\frac{\partial^2f}{\partial x_1\partial x_2}\\ \frac{\partial^2f}{\partial x_2\partial x_1}&\frac{\partial^2 f}{\partial x_2^2}\end{pmatrix}\bigg|_{X^{(0)}}, \Delta X=\dbinom{\Delta x_1}{\Delta x_2} G(X(0))=(∂x12∂2f∂x2∂x1∂2f∂x1∂x2∂2f∂x22∂2f)∣∣∣∣X(0),ΔX=(Δx2Δx1)
G(X(0))G(X^{(0)})G(X(0)) 是f(x1,x2)f(x_1,x_2)f(x1,x2) 在 X(0)X^{(0)}X(0) 处的黑塞矩阵。它是由函数f((x1,x2)f((x_1,x_2)f((x1,x2) 在 X(0)X^{(0)}X(0) 处的二阶偏导数所组成的方阵
多元函数的黑塞矩阵
将二元函数的泰勒展开式推广到多元函数,则 f(x1,x2,...,xn)f(x_1, x_2, ..., x_n)f(x1,x2,...,xn) 在 X(0)X^{(0)}X(0) 点处的泰勒展开式的矩阵形式为:
f(X)=f(X(0))+Δf(X(0))TΔX+12ΔXTG(X(0))ΔX+... f(X)=f(X^{(0)})+\Delta f(X^{(0)})^T\Delta X+\frac{1}{2}\Delta X^TG(X^{(0)})\Delta X+... f(X)=f(X(0))+Δf(X(0))TΔX+21ΔXTG(X(0))ΔX+...
其中:
(1)Δf(X0))=[∂f∂x1,∂f∂x2,...,∂f∂xn]∣X(0)T\Delta f(X^{0)})=[\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2}, ..., \frac{\partial f}{\partial x_n}]\bigg|_{X^{(0)}}^TΔf(X0))=[∂x1∂f,∂x2∂f,...,∂xn∂f]∣∣∣∣X(0)T,他是 f(x)f(x)f(x) 在X(0)X^{(0)}X(0) 点处的梯度
(2)G(X(0))=(∂2f∂x12∂2f∂x1∂x2...∂2f∂x1∂xn∂2f∂x2∂x1∂2f∂x22...∂2f∂x2∂xn⋮⋮⋱⋮∂2f∂xn∂x1∂2f∂xn∂x2...∂2f∂xn2)X(0)G(X^{(0)})=\begin{pmatrix}\frac{\partial^2 f}{\partial x_1^2}&\frac{\partial^2 f}{\partial x_1\partial x_2}&...&\frac{\partial^2 f}{\partial x_1\partial x_n}\\\frac{\partial^2 f}{\partial x_2\partial x_1}&\frac{\partial^2 f}{\partial x_2^2}&...&\frac{\partial^2 f}{\partial x_2\partial x_n}\\\vdots&\vdots&\ddots&\vdots\\\frac{\partial^2 f}{\partial x_n\partial x_1}&\frac{\partial^2 f}{\partial x_n\partial x_2}&...&\frac{\partial^2 f}{\partial x_n^2}\\\end{pmatrix}_{X^{(0)}}G(X(0))=⎝⎜⎜⎜⎜⎜⎛∂x12∂2f∂x2∂x1∂2f⋮∂xn∂x1∂2f∂x1∂x2∂2f∂x22∂2f⋮∂xn∂x2∂2f......⋱...∂x1∂xn∂2f∂x2∂xn∂2f⋮∂xn2∂2f⎠⎟⎟⎟⎟⎟⎞X(0) 为函数 f(X)f(X)f(X) 在 X(0)X^{(0)}X(0) 点处的黑塞矩阵。
黑塞矩阵是由目标函数 fff 在点X处的二阶偏导数组成的 n×nn×nn×n 阶对称矩阵。
更多推荐
所有评论(0)