Matlab/Simulink多智能体编队协同规划与控制算法仿真
具体包括:
多智能体一致性控制
多智能体事件触发控制
多智能体任务分配
多智能体协同路径规划
多智能体强化学习等
在这里插入图片描述


在MATLAB/Simulink中实现多智能体系统的仿真,涉及多个方面,如一致性控制、事件触发控制、任务分配、协同路径规划和强化学习等。以下是一个综合示例,展示如何使用MATLAB和Simulink进行这些方面的仿真,并附上相关代码。

1. 多智能体一致性控制

MATLAB代码示例
% 参数设置
numAgents = 5; % 智能体数量
maxIterations = 200; % 最大迭代次数
learningRate = 0.1; % 学习率
initialPositions = rand(numAgents, 2); % 初始位置

% 通信拓扑矩阵(简单环形拓扑)
communicationTopology = eye(numAgents);
for i = 1:numAgents
    if i < numAgents
        communicationTopology(i, i+1) = 1;
        communicationTopology(i+1, i) = 1;
    else
        communicationTopology(i, 1) = 1;
        communicationTopology(1, i) = 1;
    end
end

% 归一化通信矩阵
communicationMatrix = communicationTopology / sum(communicationTopology, 2);

% 初始化变量
positions = initialPositions;

% 迭代更新
for iter = 1:maxIterations
    % 更新位置
    newPosition = zeros(size(positions));
    for i = 1:numAgents
        neighborSum = sum(bsxfun(@times, communicationMatrix(i, :), positions), 1);
        newPosition(i, :) = positions(i, :) + learningRate * (neighborSum - positions(i, :));
    end
    
    % 更新位置
    positions = newPosition;
    
    % 打印当前状态
    fprintf('Iteration %d: Positions = \n', iter);
    disp(positions);
end

% 绘制结果
figure;
plot(positions(:, 1), positions(:, 2), 'o');
title('Final Positions of Agents');
xlabel('X Position');
ylabel('Y Position');
grid on;

2. 多智能体事件触发控制

事件触发控制是一种减少通信频率的方法,只在满足某些条件时才进行通信。

MATLAB代码示例
% 参数设置
numAgents = 5; % 智能体数量
maxIterations = 200; % 最大迭代次数
learningRate = 0.1; % 学习率
initialPositions = rand(numAgents, 2); % 初始位置
threshold = 0.1; % 触发阈值

% 通信拓扑矩阵(简单环形拓扑)
communicationTopology = eye(numAgents);
for i = 1:numAgents
    if i < numAgents
        communicationTopology(i, i+1) = 1;
        communicationTopology(i+1, i) = 1;
    else
        communicationTopology(i, 1) = 1;
        communicationTopology(1, i) = 1;
    end
end

% 归一化通信矩阵
communicationMatrix = communicationTopology / sum(communicationTopology, 2);

% 初始化变量
positions = initialPositions;
lastUpdate = zeros(numAgents, 1); % 上次更新时间

% 迭代更新
for iter = 1:maxIterations
    % 更新位置
    newPosition = zeros(size(positions));
    for i = 1:numAgents
        if iter - lastUpdate(i) >= threshold
            neighborSum = sum(bsxfun(@times, communicationMatrix(i, :), positions), 1);
            newPosition(i, :) = positions(i, :) + learningRate * (neighborSum - positions(i, :));
            lastUpdate(i) = iter;
        end
    end
    
    % 更新位置
    positions = newPosition;
    
    % 打印当前状态
    fprintf('Iteration %d: Positions = \n', iter);
    disp(positions);
end

% 绘制结果
figure;
plot(positions(:, 1), positions(:, 2), 'o');
title('Final Positions of Agents with Event-Triggered Control');
xlabel('X Position');
ylabel('Y Position');
grid on;

3. 多智能体任务分配

MATLAB代码示例
% 参数设置
numAgents = 5; % 智能体数量
numTasks = 10; % 任务数量
taskLocations = rand(numTasks, 2); % 任务位置

% 初始化变量
assignments = zeros(numAgents, 1); % 每个智能体的任务分配
agentPositions = rand(numAgents, 2); % 智能体初始位置

% 分配任务
for i = 1:numTasks
    [~, minIdx] = min(sum(bsxfun(@minus, taskLocations(i, :), agentPositions).^2, 2));
    assignments(minIdx) = assignments(minIdx) + 1;
end

% 输出结果
disp('Task Assignments:');
disp(assignments);

% 绘制结果
figure;
hold on;
scatter(agentPositions(:, 1), agentPositions(:, 2), 'filled', 'b');
scatter(taskLocations(:, 1), taskLocations(:, 2), 'filled', 'r');
legend('Agents', 'Tasks');
title('Agent Task Allocation');
xlabel('X Position');
ylabel('Y Position');
grid on;
hold off;

4. 多智能体协同路径规划

MATLAB代码示例

使用A*算法进行路径规划:

function path = multiAgentPathPlanning(startPoints, goalPoints, gridMap)
    numAgents = size(startPoints, 1);
    paths = cell(1, numAgents);

    for i = 1:numAgents
        start = startPoints(i, :);
        goal = goalPoints(i, :);
        path = astar(gridMap, start, goal);
        paths{i} = path;
    end

    path = paths;
end

function path = astar(gridMap, start, goal)
    % A*算法实现
    openSet = [start];
    closedSet = [];
    cameFrom = containers.Map();
    gScore = inf(size(gridMap));
    gScore(start(1), start(2)) = 0;
    fScore = inf(size(gridMap));
    fScore(start(1), start(2)) = heuristic(start, goal);

    while ~isempty(openSet)
        current = getLowestFScoreNode(openSet, fScore);
        if isequal(current, goal)
            path = reconstructPath(cameFrom, current);
            return;
        end

        openSet = setdiff(openSet, current, 'rows');
        closedSet = [closedSet; current];

        neighbors = getNeighbors(current, gridMap);
        for _, neighbor in enumerate(neighbors)
            if any(ismember(neighbor, closedSet, 'rows'))
                continue;
            end

            tentativeGScore = gScore(current(1), current(2)) + 1;
            if ~any(ismember(neighbor, openSet, 'rows'))
                openSet = [openSet; neighbor];
            elseif tentativeGScore >= gScore(neighbor(1), neighbor(2))
                continue;
            end

            cameFrom(neighbor) = current;
            gScore(neighbor(1), neighbor(2)) = tentativeGScore;
            fScore(neighbor(1), neighbor(2)) = gScore(neighbor(1), neighbor(2)) + heuristic(neighbor, goal);
        end
    end
    path = [];
end

function h = heuristic(node, goal)
    h = norm(node - goal);
end

function node = getLowestFScoreNode(openSet, fScore)
    [~, idx] = min(fScore(openSet(:, 1), openSet(:, 2)));
    node = openSet(idx, :);
end

function neighbors = getNeighbors(node, gridMap)
    directions = [0 1; 1 0; 0 -1; -1 0];
    neighbors = [];
    for d = 1:size(directions, 1)
        neighbor = node + directions(d, :);
        if isValidPosition(neighbor, gridMap)
            neighbors = [neighbors; neighbor];
        end
    end
end

function valid = isValidPosition(pos, gridMap)
    valid = pos(1) > 0 && pos(1) <= size(gridMap, 1) && ...
            pos(2) > 0 && pos(2) <= size(gridMap, 2) && ...
            gridMap(pos(1), pos(2)) == 0;
end

function path = reconstructPath(cameFrom, current)
    totalPath = current;
    while isKey(cameFrom, current)
        current = cameFrom(current);
        totalPath = [current; totalPath];
    end
    path = totalPath;
end

5. 多智能体强化学习

使用Q-learning进行简单的多智能体强化学习:

% 参数设置
numAgents = 5; % 智能体数量
numActions = 4; % 动作数量(上下左右)
numStates = 16; % 状态数量(假设为4x4网格)
learningRate = 0.1; % 学习率
discountFactor = 0.9; % 折扣因子
epsilon = 0.1; % 探索率
maxEpisodes = 1000; % 最大回合数

% 初始化Q表
Q = rand(numAgents, numStates, numActions);

% 模拟环境(简单4x4网格)
environment = zeros(4, 4);
goalState = [3, 3]; % 目标状态

% 模拟训练过程
for episode = 1:maxEpisodes
    % 初始化状态
    currentState = [randi([1, 4]), randi([1, 4])];
    
    while ~isequal(currentState, goalState)
        % 选择动作
        if rand < epsilon
            action = randi([1, numActions]);
        else
            [~, action] = max(Q(:, currentState(1), currentState(2)), [], 2);
        end
        
        % 执行动作并观察新状态和奖励
        nextState = executeAction(currentState, action);
        reward = calculateReward(nextState, goalState);
        
        % 更新Q表
        bestNextAction = max(Q(:, nextState(1), nextState(2)), [], 2);
        Q(:, currentState(1), currentState(2), action) = Q(:, currentState(1), currentState(2), action) + ...
            learningRate * (reward + discountFactor * bestNextAction - Q(:, currentState(1), currentState(2), action));
        
        % 更新状态
        currentState = nextState;
    end
end

% 定义执行动作的函数
function nextState = executeAction(state, action)
    switch action
        case 1 % 上
            nextState = state - [1, 0];
        case 2 % 下
            nextState = state + [1, 0];
        case 3 % 左
            nextState = state - [0, 1];
        case 4 % 右
            nextState = state + [0, 1];
    end
    
    % 边界检查
    nextState(1) = max(1, min(nextState(1), 4));
    nextState(2) = max(1, min(nextState(2), 4));
end

% 定义计算奖励的函数
function reward = calculateReward(state, goalState)
    if isequal(state, goalState)
        reward = 100;
    else
        reward = -1;
    end
end

总结

上述代码展示了如何在MATLAB中实现多智能体系统的一致性控制、事件触发控制、任务分配、协同路径规划和强化学习。每段代码都针对一个具体的应用场景,可以根据实际需求进一步扩展和优化。
在这里插入图片描述
在这里插入图片描述

Logo

有“AI”的1024 = 2048,欢迎大家加入2048 AI社区

更多推荐