动量方程基本表达形式
不同文献中动量方程的表达形式也多种多样,现总结如下:守恒形式:∂(ρU)∂t=−∇⋅(ρUU)−∇⋅τ−∇p+ρg\frac{\partial( \rho \mathbf U)}{\partial t}=-\nabla \cdot {(\rho\mathbf U \mathbf U ) }-\nabla \cdot \mathbf \tau -\nabla p+\rho \mathbf g∂t∂(
不同文献中动量方程的表达形式也多种多样,现总结如下:
-
守恒形式:
∂ ( ρ U ) ∂ t = − ∇ ⋅ ( ρ U U ) − ∇ ⋅ τ − ∇ p + ρ g \frac{\partial( \rho \mathbf U)}{\partial t}=-\nabla \cdot {(\rho\mathbf U \mathbf U ) }-\nabla \cdot \mathbf \tau -\nabla p+\rho \mathbf g ∂t∂(ρU)=−∇⋅(ρUU)−∇⋅τ−∇p+ρg -
引入切应力张量的守恒形式:
∂ ( ρ U ) ∂ t = − ∇ ⋅ ( ρ U U ) − ∇ ⋅ ( 2 μ D − 2 3 μ ( ∇ ⋅ U ) I ) − ∇ p + ρ g \frac{\partial( \rho \mathbf U)}{\partial t}=-\nabla \cdot {(\rho\mathbf U \mathbf U ) }-\nabla \cdot \left( 2\mu \mathbf D-\frac23\mu(\nabla \cdot \mathbf U)\mathbf I \right) -\nabla p+\rho \mathbf g ∂t∂(ρU)=−∇⋅(ρUU)−∇⋅(2μD−32μ(∇⋅U)I)−∇p+ρg -
引入
secondary viscosity的守恒形式( λ = − 2 3 μ \lambda=-\frac 23\mu λ=−32μ ):
∂ ( ρ U ) ∂ t = − ∇ ⋅ ( ρ U U ) − ∇ ⋅ ( 2 μ D + λ ( ∇ ⋅ U ) I ) − ∇ p + ρ g \frac{\partial( \rho \mathbf U)}{\partial t}=-\nabla \cdot {(\rho\mathbf U \mathbf U ) }-\nabla \cdot \left( 2\mu \mathbf D+\lambda(\nabla \cdot \mathbf U)\mathbf I \right) -\nabla p+\rho \mathbf g ∂t∂(ρU)=−∇⋅(ρUU)−∇⋅(2μD+λ(∇⋅U)I)−∇p+ρg -
包含体积粘度的守恒形式:
∂ ( ρ U ) ∂ t = − ∇ ⋅ ( ρ U U ) − ∇ ⋅ ( 2 μ D [ − 2 3 μ + κ ] ( ∇ ⋅ U ) I ) − ∇ p + ρ g \frac{\partial( \rho \mathbf U)}{\partial t}=-\nabla \cdot {(\rho\mathbf U \mathbf U ) }-\nabla \cdot \left( 2\mu \mathbf D \left[-\frac23\mu+\kappa \right] (\nabla \cdot \mathbf U)\mathbf I \right) -\nabla p+\rho \mathbf g ∂t∂(ρU)=−∇⋅(ρUU)−∇⋅(2μD[−32μ+κ](∇⋅U)I)−∇p+ρg -
带有迹
tr操作符的守恒形式:
∂ ( ρ U ) ∂ t = − ∇ ⋅ ( ρ U U ) − ∇ ⋅ ( 2 μ D [ − 2 3 μ + κ ] t r ( D ) I ) − ∇ p + ρ g \frac{\partial( \rho \mathbf U)}{\partial t}=-\nabla \cdot {(\rho\mathbf U \mathbf U ) }-\nabla \cdot \left( 2\mu \mathbf D \left[-\frac23\mu+\kappa \right] tr(\bf D)\mathbf I \right) -\nabla p+\rho \mathbf g ∂t∂(ρU)=−∇⋅(ρUU)−∇⋅(2μD[−32μ+κ]tr(D)I)−∇p+ρg
t r ( D ) = t r ( 1 2 [ ∇ U + ∇ U T ] ) = 1 2 ( 2 ∂ u x ∂ x + 2 ∂ u y ∂ y + 2 ∂ u z ∂ z ) = ∇ ⋅ U tr \left(\bf D \right) =tr\left(\frac 12 \left[ \nabla{ \bf U} + \nabla { \bf U}^T \right] \right)= \frac12\left(2\frac{\partial u_x}{\partial x}+2\frac{\partial u_y}{\partial y}+2\frac{\partial u_z}{\partial z}\right) =\nabla \cdot \bf U tr(D)=tr(21[∇U+∇UT])=21(2∂x∂ux+2∂y∂uy+2∂z∂uz)=∇⋅U
- 带有柯西(Cauchy)应力的守恒形式:
∂ ( ρ U ) ∂ t = − ∇ ⋅ ( ρ U U ) − ∇ ⋅ σ + ρ g \frac{\partial( \rho \mathbf U)}{\partial t}=-\nabla \cdot {(\rho\mathbf U \mathbf U ) }-\nabla \cdot \sigma +\rho \mathbf g ∂t∂(ρU)=−∇⋅(ρUU)−∇⋅σ+ρg - 非守恒形式:
ρ D U D t = − ∇ ⋅ σ + ρ g \rho \frac{D\bf U}{Dt}=-\nabla \cdot \sigma +\rho \mathbf g ρDtDU=−∇⋅σ+ρg
关于物质导数 D D t \frac{D}{D t} DtD 运算规则可参考热力学数学运算规则。
更多推荐


所有评论(0)