Kalman滤波(Part-1:信号模型基础)
Kalman滤波
Kalman Filters
Dynamical Signal Models
一阶高斯-马尔可夫过程(first-order Gauss-Markov process):描述采样点之间(相邻)的相关性:
s[n]=as[n−1]+u[n](1) s[n] = as[n-1] + u[n] \tag{1} s[n]=as[n−1]+u[n](1)
其中u[n]u[n]u[n]是高斯白噪声(White Gaussian Noise, WGN),方差为σu2\sigma^2_uσu2,s[−1]∼N(μs,σs2)s[-1]\sim \mathcal{N}(\mu_s,\sigma^2_s)s[−1]∼N(μs,σs2),s[−1]s[-1]s[−1]与u[n]u[n]u[n]相互独立(∀n≥0\forall n \geq 0∀n≥0)。该模型也常被称为dynamical model / state model
将s[n]s[n]s[n]表示为初始条件s[−1]s[-1]s[−1]的函数形式:
s[0]=as[−1]+u[0]s[1]=as[0]+u[1]=a2s[−1]+au[0]+u[1]etc. \begin{aligned} s[0] &= as[-1] + u[0] \\ s[1] &= as[0] + u[1] \\ &= a^2 s[-1] + au[0] + u[1] \\ & \text{etc.} \end{aligned} s[0]s[1]=as[−1]+u[0]=as[0]+u[1]=a2s[−1]+au[0]+u[1]etc.
一般地,我们有
s[n]=an+1s[−1]+∑k=0naku[n−k](2) s[n] = a^{n+1} s[-1] + \sum_{k=0}^n a^k u[n-k] \tag{2} s[n]=an+1s[−1]+k=0∑naku[n−k](2)
高斯随机过程(Gaussian random process):给定kkk,对任意的采样点{s[n1],⋯ ,s[nk]}\{s[n_1],\cdots,s[n_k]\}{s[n1],⋯,s[nk]},kkk维随机向量s=[s[n1],⋯ ,s[nk]]T\boldsymbol{s} = [s[n_1],\cdots,s[n_k]]^Ts=[s[n1],⋯,s[nk]]T的分布为高维的高斯PDF,就认为s[n]s[n]s[n]是一个高斯随机过程。
因为随机变量s[−1]s[-1]s[−1]和u[⋅]u[\cdot]u[⋅]都是高斯随机变量并且相互独立,不难看出,s[n]s[n]s[n]是一个高斯随机过程。另外,
E[s[n]]=an+1E[s[−1]]=an+1μs \mathbb{E} [s[n]] = a^{n+1} \mathbb{E}[s[-1]]=a^{n+1} \mu_s E[s[n]]=an+1E[s[−1]]=an+1μs
采样点s[m]s[m]s[m]与s[n]s[n]s[n]之间的协方差为:
cs[m,n]=E[(s[m]−E[s[m]])(s[n]−E[s[n]])]=E[(am+1(s[−1]−μs)+∑k=0maku[m−k])⋅(an+1(s[−1]−μs)+∑l=0nalu[n−l])]=am+n+2σs2+∑k=0m∑l=0nak+lE[u[m−k]u[n−l]] \begin{aligned} c_s[m,n] &= \mathbb{E} \left [ (s[m] - \mathbb{E} [s[m]]) (s[n] - \mathbb{E} [s[n]]) \right] \\ &= \mathbb{E} \left [ \left( a^{m+1}(s[-1] - \mu_s) + \sum_{k=0}^m a^k u[m-k] \right ) \cdot \left( a^{n+1}(s[-1] - \mu_s) + \sum_{l=0}^n a^l u[n-l] \right ) \right] \\ &= a^{m+n+2} \sigma_s^2 + \sum_{k=0}^m \sum_{l=0}^n a^{k+l} \mathbb{E} [u[m-k] u [n-l]] \end{aligned} cs[m,n]=E[(s[m]−E[s[m]])(s[n]−E[s[n]])]=E[(am+1(s[−1]−μs)+k=0∑maku[m−k])⋅(an+1(s[−1]−μs)+l=0∑nalu[n−l])]=am+n+2σs2+k=0∑ml=0∑nak+lE[u[m−k]u[n−l]]
但是
E[u[m−k]u[n−l]]=σu2δ[k−(l+m−n)] \mathbb{E} [u[m-k] u [n-l]] = \sigma^2_u \delta [k - (l+m-n)] E[u[m−k]u[n−l]]=σu2δ[k−(l+m−n)]
因此,当m≥nm \geq nm≥n时
cs[m,n]=am+n+2σs2+σu2am−n∑l=0na2l \begin{aligned} c_s[m,n] &= a^{m+n+2} \sigma_s^2 + \sigma^2_u a^{m-n} \sum_{l=0}^n a^{2l} \end{aligned} cs[m,n]=am+n+2σs2+σu2am−nl=0∑na2l
当m<nm < nm<n时,cs[m,n]=cs[n,m]c_s[m,n] = c_s[n,m]cs[m,n]=cs[n,m]。基于上述协方差,可以得到方差为
var[s[n]]=cs[n,n]=a2n+2σs2+σu2∑l=0na2l \begin{aligned} \text{var}[s[n]] &= c_s[n,n] \\ &= a^{2n+2} \sigma^2_s + \sigma^2_u \sum_{l=0}^n a^{2l} \end{aligned} var[s[n]]=cs[n,n]=a2n+2σs2+σu2l=0∑na2l
显然,因为E[s[n]]=an+1μs\mathbb{E} [s[n]] = a^{n+1} \mu_sE[s[n]]=an+1μs与nnn相关,且协方差与m,nm,nm,n相关,因此s[n]s[n]s[n]不是一个广义平稳过程(Wide-sense stationary, WSS)。然而,当n→∞n \rightarrow \inftyn→∞时
E[s[n]]→0cs[m,n]→σu2am−n1−a2 \begin{aligned} \mathbb{E} [s[n]] & \rightarrow 0 \\ c_s[m,n] &\rightarrow \frac{\sigma_u^2 a^{m-n}}{1 - a^2} \end{aligned} E[s[n]]cs[m,n]→0→1−a2σu2am−n
因为∣a∣<1|a| < 1∣a∣<1(该条件对于整个过程的稳定是必要的,否则,均值和方差将会随着nnn呈指数形式增长)
因为高斯-马尔可夫过程的特殊形式,其均值和方差也可以被迭代地表征(式(3,4)被称为均值与方差传播公式)
E[s[n]]=aE[s[n−1]](3) \mathbb{E} [s[n]] = a \mathbb{E} [s[n-1]] \tag{3} E[s[n]]=aE[s[n−1]](3)
var[s[n]]=E[(s[n]−E[s[n]]2)2]=E[(as[n−1]+u[n]−aE[s[n−1]])2]=a2var[s[n−1]]+σu2(4) \begin{aligned} \text{var}[s[n]] &= \mathbb{E} \left [ (s[n] - \mathbb{E}[s[n]]^2)^2 \right] \\ &= \mathbb{E} \left [ {\left ( as[n-1] + u[n] - a\mathbb{E}[s[n-1]] \right)}^2 \right] \\ &= a^2 \text{var}[s[n-1]] + \sigma^2_u \tag{{4}} \end{aligned} var[s[n]]=E[(s[n]−E[s[n]]2)2]=E[(as[n−1]+u[n]−aE[s[n−1]])2]=a2var[s[n−1]]+σu2(4)
其中我们使用了E[u[n]s[n−1]]=0\mathbb{E}[u[n]s[n-1]] = 0E[u[n]s[n−1]]=0,这是因为s[n−1]s[n-1]s[n−1]只取决于{s[−1],u[0],⋯ ,u[n−1]}\{s[-1], u[0], \cdots, u[n-1]\}{s[−1],u[0],⋯,u[n−1]},且这些随机变量独立于u[n]u[n]u[n]。注意到,在式(4)中,第一项as[n−1]as[n-1]as[n−1]会造成方差减小,第二项的积累σu2\sigma^2_uσu2会造成方差增大,在达到稳态(steady state)后,或者n→∞n\rightarrow\inftyn→∞,两项的作用相互平衡,收敛为σu2/(1−a2)\sigma^2_u / (1-a^2)σu2/(1−a2).
考虑一个ppp阶的高斯-马尔可夫过程:
s[n]=−∑k=1pa[k]s[n−k]+u[n](5) s[n] = - \sum_{k=1}^p a[k] s[n-k] + u[n] \tag{5} s[n]=−k=1∑pa[k]s[n−k]+u[n](5)
因为s[n]s[n]s[n]取决于前ppp个采样点,所以均值和方差传播式变得更加复杂。为了拓展之前的结论,我们指定{s[n−1],s[n−2],⋯ ,s[n−p]}\{s[n-1],s[n-2],\cdots,s[n-p]\}{s[n−1],s[n−2],⋯,s[n−p]}为采样时刻nnn的系统状态(system state),我们定义状态向量:
s[n−1]=[s[n−p]s[n−p+1]⋮s[n−1]](6) \boldsymbol{s}\left[ n-1 \right] =\left[ \begin{array}{c} \begin{array}{c} s\left[ n-p \right]\\ s\left[ n-p+1 \right]\\ \end{array}\\ \vdots\\ s\left[ n-1 \right]\\ \end{array} \right] \tag{6} s[n−1]=⎣⎢⎢⎢⎡s[n−p]s[n−p+1]⋮s[n−1]⎦⎥⎥⎥⎤(6)
我们可以把式(10)写为
[s[n−p+1]s[n−p+2]⋮s[n−1]s[n]]=[010⋯0001⋯0000⋯0⋮⋮⋮⋱⋮−a[p]−a[p−1]−a[p−2]⋯−a[1]]⏟A[s[n−p]s[n−p+1]⋮s[n−2]s[n−1]]+[00⋮1]⏟Bu[n] \left[ \begin{array}{c} \begin{array}{c} s\left[ n-p+1 \right]\\ s\left[ n-p+2 \right]\\ \end{array}\\ \vdots\\ \begin{array}{c} s\left[ n-1 \right]\\ s\left[ n \right]\\ \end{array}\\ \end{array} \right] =\mathop {\underbrace{\left[ \begin{matrix}{} 0& 1& 0& \cdots& 0\\ 0& 0& 1& \cdots& 0\\ 0& 0& 0& \cdots& 0\\ \vdots& \vdots& \vdots& \ddots& \vdots\\ -a\left[ p \right]& -a\left[ p-1 \right]& -a\left[ p-2 \right]& \cdots& -a\left[ 1 \right]\\ \end{matrix} \right] }} \limits_{\boldsymbol{A}}\left[ \begin{array}{c} \begin{array}{c} s\left[ n-p \right]\\ s\left[ n-p+1 \right]\\ \end{array}\\ \vdots\\ \begin{array}{c} s\left[ n-2 \right]\\ s\left[ n-1 \right]\\ \end{array}\\ \end{array} \right] +\mathop {\underbrace{\left[ \begin{array}{c} 0\\ 0\\ \vdots\\ 1\\ \end{array} \right] }} \limits_{\boldsymbol{B}}u\left[ n \right] ⎣⎢⎢⎢⎢⎢⎡s[n−p+1]s[n−p+2]⋮s[n−1]s[n]⎦⎥⎥⎥⎥⎥⎤=A
⎣⎢⎢⎢⎢⎢⎡000⋮−a[p]100⋮−a[p−1]010⋮−a[p−2]⋯⋯⋯⋱⋯000⋮−a[1]⎦⎥⎥⎥⎥⎥⎤⎣⎢⎢⎢⎢⎢⎡s[n−p]s[n−p+1]⋮s[n−2]s[n−1]⎦⎥⎥⎥⎥⎥⎤+B
⎣⎢⎢⎢⎡00⋮1⎦⎥⎥⎥⎤u[n]
其中的前(p−1)(p-1)(p−1)个方程为方阵,根据定义,将上式写为状态向量的形式:
s[n]=As[n−1]+Bu[n](7) \boldsymbol s[n] = \boldsymbol A \boldsymbol s[n-1] + \boldsymbol B \boldsymbol u[n] \tag{7} s[n]=As[n−1]+Bu[n](7)
其中A\boldsymbol{ A}A是一个p×pp \times pp×p的非奇异矩阵(称为状态转移矩阵:state transition matrix),B\boldsymbol{ B}B是一个p×1p \times 1p×1的向量。式(7)的形式被称为向量高斯-马尔可夫模型(Vector Gauss-Markov Model)。更一般的模型可表示为,
s[n]=As[n−1]+Bu[n](8) \boldsymbol s[n] = \boldsymbol A \boldsymbol s[n-1] + \boldsymbol B \boldsymbol u[n] \tag{8} s[n]=As[n−1]+Bu[n](8)
其中A,B\boldsymbol{A,B}A,B都是固定的矩阵,A\boldsymbol{ A}A的维度为p×pp \times pp×p,B\boldsymbol{B}B的维度为p×rp \times rp×r。s[n]\boldsymbol{ s}[n]s[n]是一个p×1p \times 1p×1的信号向量,u[n]\boldsymbol{ u}[n]u[n]是一个驱动噪声矢量(driving noise vector)。我们称式(8)为状态模型(state model),该模型的统计假设有:
-
输入的u[n]\boldsymbol{u}[n]u[n]是高斯白噪声,q向量,即u[n]\boldsymbol{ u}[n]u[n]是一个不相关的联合高斯分布的序列,且E[u[n]]=0\mathbb{E}[\boldsymbol{u}[n]] = \boldsymbol{ 0}E[u[n]]=0,
E[u[m]uT[n]]=0, m≠n\mathbb{E}[\boldsymbol u[m] \boldsymbol u^T[n]] = \boldsymbol{ 0}, \ \ \ \ m\neq nE[u[m]uT[n]]=0, m=n u[n]\boldsymbol{u}[n]u[n]的协方差为:
E[u[n]uT[n]]=Q\mathbb{E}[\boldsymbol u[n] \boldsymbol u^T[n]] = \boldsymbol{Q}E[u[n]uT[n]]=Q 其中Q\boldsymbol{ Q}Q 是一个r×rr \times rr×r的正定矩阵。 -
初始状态s[−1]\boldsymbol{ s}[-1]s[−1]是随机向量: s[−1]∼N(μs,Cs)\boldsymbol{s}[-1] \sim \mathcal{N}(\boldsymbol{\mu}_s, \boldsymbol{C}_s)s[−1]∼N(μs,Cs)独立于u[n],∀n≥0\boldsymbol{u}[n], \forall n \geq 0u[n],∀n≥0
我们进一步推导向量高斯-马尔可夫模型的统计特征(标量模型的扩展),依据式(8),
s[0]=As[−1]+Bu[0]s[1]=As[0]+Bu[1]=A2s[−1]+ABu[0]+Bu[1]etc. \begin{aligned} \boldsymbol s [0] & = \boldsymbol A \boldsymbol s [-1] + \boldsymbol{ B}\boldsymbol u [0] \\ \boldsymbol s [1] & = \boldsymbol A \boldsymbol s [0] + \boldsymbol{ B}\boldsymbol u [1] \\ &= \boldsymbol A^2 \boldsymbol s [-1] + \boldsymbol{A B}\boldsymbol u [0] + \boldsymbol{ B}\boldsymbol u [1] \\ & \text{etc.} \end{aligned} s[0]s[1]=As[−1]+Bu[0]=As[0]+Bu[1]=A2s[−1]+ABu[0]+Bu[1]etc.
一般地,我们可以推广得到
s[n]=An+1s[−1]+∑k=0nAkBu[n−k] \boldsymbol s[n] = \boldsymbol A^{n+1} \boldsymbol s[-1] + \sum_{k=0}^n \boldsymbol A^k \boldsymbol B \boldsymbol u[n-k] s[n]=An+1s[−1]+k=0∑nAkBu[n−k]
其中A0=I\boldsymbol{A}^0=\boldsymbol{I}A0=I,可以看出,s[n]\boldsymbol{ s}[n]s[n]初始条件s[−1]\boldsymbol{s}[-1]s[−1]和u[⋅]\boldsymbol{u}[\cdot]u[⋅]的线性组合,因此,s[n]\boldsymbol{s}[n]s[n]是一个高斯随机过程,那么就只需要决定其均值和方差。
E[s[n]]=An+1E[s[−1]]=An+1μs(9) \mathbb{E}[\boldsymbol s[n]] = \boldsymbol A^{n+1} \mathbb{E}[\boldsymbol s[-1]] = \boldsymbol A^{n+1} \boldsymbol \mu_s \tag{9} E[s[n]]=An+1E[s[−1]]=An+1μs(9)
其协方差:
Cs[m,n]=E[(s[m]−E[s[m]])(s[n]−E[s[n]])T]=E[(Am+1(s[−1]−μs)+∑k=0mAkBu[m−k])⋅(An+1(s[−1]−μs)+∑l=0nAlBu[n−l])T]=Am+1CsAn+1T+∑k=0m∑l=0nAkBE[u[m−k]uT[n−l]]BTAlT \begin{aligned} \boldsymbol C_s[m,n] &= \mathbb{E} \left [ {\left( \boldsymbol s[m] - \mathbb{E}[\boldsymbol s[m]] \right)} {\left( \boldsymbol s[n] - \mathbb{E}[\boldsymbol s[n]] \right)}^T \right] \\ & = \mathbb{E} \left [ \left( \boldsymbol A^{m+1} (\boldsymbol s[-1] - \boldsymbol \mu_s) + \sum_{k=0}^m \boldsymbol A^k \boldsymbol B \boldsymbol u[m-k] \right) \cdot {\left( \boldsymbol A^{n+1} (\boldsymbol s[-1] - \boldsymbol \mu_s) + \sum_{l=0}^n \boldsymbol A^l \boldsymbol B \boldsymbol u[n-l] \right)}^T \right] \\ &= \boldsymbol A^{m+1} \boldsymbol C_s \boldsymbol A^{{n+1}^T} + \sum_{k=0}^m \sum_{l=0}^n \boldsymbol A^k \boldsymbol B \mathbb{E} \left [ \boldsymbol{ u}[m-k] \boldsymbol{u}^T[n-l]\right] \boldsymbol B^T \boldsymbol A^{l^T} \end{aligned} Cs[m,n]=E[(s[m]−E[s[m]])(s[n]−E[s[n]])T]=E⎣⎡(Am+1(s[−1]−μs)+k=0∑mAkBu[m−k])⋅(An+1(s[−1]−μs)+l=0∑nAlBu[n−l])T⎦⎤=Am+1CsAn+1T+k=0∑ml=0∑nAkBE[u[m−k]uT[n−l]]BTAlT
注意到,
E[u[m−k]uT[n−l]]=Qδ[l−(n−m+k)] \mathbb{E} \left [ \boldsymbol{ u}[m-k] \boldsymbol{u}^T[n-l]\right] = \boldsymbol Q \delta [l-(n-m+k)] E[u[m−k]uT[n−l]]=Qδ[l−(n−m+k)]
因此,当m≥nm \geq nm≥n时,
Cs[m,n]=Am+1CsAn+1T+∑l=0nAl+m−nBQBTAlT(10) \boldsymbol C_s[m,n] = \boldsymbol A^{m+1} \boldsymbol C_s \boldsymbol A^{{n+1}^T} + \sum_{l=0}^n \boldsymbol A^{l+m-n} \boldsymbol {BQB}^T \boldsymbol A^{l^T} \tag{{10}} Cs[m,n]=Am+1CsAn+1T+l=0∑nAl+m−nBQBTAlT(10)
当m<nm<nm<n时,
Cs[m,n]=CsT[n,m] \boldsymbol C_s[m,n] = \boldsymbol C_s^T[n,m] Cs[m,n]=CsT[n,m]
那么协方差矩阵可以表示为:
C[n]=Cs[n,n]=An+1CsAn+1T+∑k=0nAkBQBTAkT(11) \begin{aligned} \boldsymbol C[n] &= \boldsymbol C_s[n,n] \\ &= \boldsymbol A^{n+1} \boldsymbol C_s \boldsymbol A^{{n+1}^T} + \sum_{k=0}^n \boldsymbol A^k \boldsymbol{BQB}^T \boldsymbol A^{k^T} \tag{11} \end{aligned} C[n]=Cs[n,n]=An+1CsAn+1T+k=0∑nAkBQBTAkT(11)
期望和方差的传播方程可以写为:
E[s[n]]=AE[s[n−1]](12) \boldsymbol E[\boldsymbol s[n]] = \boldsymbol A \boldsymbol E[\boldsymbol s [n-1]] \tag{12} E[s[n]]=AE[s[n−1]](12)
C[n]=AC[n−1]AT+BQBT \boldsymbol C[n] = \boldsymbol A \boldsymbol C[n-1] \boldsymbol A^T + \boldsymbol {BQB}^T C[n]=AC[n−1]AT+BQBT
注意,只有当A\boldsymbol{A}A的特征值幅度都小于1,才是一个稳定的过程(steady process)。
当n→∞n \rightarrow \inftyn→∞时,
E[s[n]]=An+1μs→0 \mathbb{E} [\boldsymbol s [n]] = \boldsymbol A^{n+1} \boldsymbol \mu_s \rightarrow \boldsymbol 0 E[s[n]]=An+1μs→0
An+1CsAn+1T→0 \boldsymbol A^{n+1} \boldsymbol C_s \boldsymbol A^{{n+1}^T} \rightarrow 0 An+1CsAn+1T→0
因此,
C[n]→C=∑k=0∞AkBQBTAkT(13) \boldsymbol C[n] \rightarrow \boldsymbol C = \sum_{k=0}^{\infty} \boldsymbol A^k \boldsymbol {BQB}^T \boldsymbol A^{k^T} \tag{13} C[n]→C=k=0∑∞AkBQBTAkT(13)
另外,当n→∞n\rightarrow\inftyn→∞,C[n−1]=C[n]\boldsymbol{C}[n-1]=\boldsymbol{C}[n]C[n−1]=C[n],那么稳态的协方差矩阵为方程(14)的解:
C=ACAT+BQBT(14) \boldsymbol C = \boldsymbol {ACA}^T + \boldsymbol {BQB}^T \tag{14} C=ACAT+BQBT(14)
该方程被称为Lyapunov equation.
将上述模型和定理总结如下:
定理-1:向量高斯马尔可夫模型(Vector Gauss-Markov Model):对一个p×1p \times 1p×1的信号向量s[n]\boldsymbol{ s}[n]s[n],其高斯-马尔可夫模型为:
s[n]=As[n−1]+Bu[n], n≥0(15) \boldsymbol s[n] = \boldsymbol A \boldsymbol s[n-1] + \boldsymbol B \boldsymbol u [n], \ \ \ \ n \geq 0 \tag{15} s[n]=As[n−1]+Bu[n], n≥0(15)
A(p×p)\boldsymbol{A} (p \times p)A(p×p)和B(p×r)\boldsymbol{ B} (p \times r)B(p×r)已知,假设A\boldsymbol AA的特征值幅度小于1,u[n](r×1)\boldsymbol{u}[n] (r \times 1)u[n](r×1)为高斯白噪声向量,u[n]∼N(0,Q)\boldsymbol{u}[n] \sim \mathcal{N}(\boldsymbol{0},\boldsymbol{Q})u[n]∼N(0,Q)且{u[n]}\{\boldsymbol{u}[n]\}{u[n]}之间相互独立。初始条件s[−1]∼N(μs,Cs)\boldsymbol{s}[-1] \sim \mathcal N(\boldsymbol{ \mu}_s,\boldsymbol C_s)s[−1]∼N(μs,Cs),独立于{u[n]}\{\boldsymbol{u}[n]\}{u[n]},那么该信号过程是高斯的,且其均值为
E[s[n]]=An+1μs(16) \mathbb{E} [\boldsymbol s [n]] = \boldsymbol A^{n+1} \boldsymbol \mu_s \tag{16} E[s[n]]=An+1μs(16)
当m≥nm \geq nm≥n时,协方差为
Cs[m,n]=Am+1CsAn+1T+∑l=0nAl+m−nBQBTAlT(17) \boldsymbol C_s[m,n] = \boldsymbol A^{m+1} \boldsymbol C_s \boldsymbol A^{{n+1}^T} + \sum_{l=0}^n \boldsymbol A^{l+m-n} \boldsymbol {BQB}^T \boldsymbol A^{l^T} \tag{{17}} Cs[m,n]=Am+1CsAn+1T+l=0∑nAl+m−nBQBTAlT(17)
当m<nm<nm<n时,
Cs[m,n]=CsT[n,m] \boldsymbol C_s[m,n] = \boldsymbol C_s^T[n,m] Cs[m,n]=CsT[n,m]
那么协方差矩阵可以表示为:
C[n]=Cs[n,n]=An+1CsAn+1T+∑k=0nAkBQBTAkT(18) \begin{aligned} \boldsymbol C[n] &= \boldsymbol C_s[n,n] \\ &= \boldsymbol A^{n+1} \boldsymbol C_s \boldsymbol A^{{n+1}^T} + \sum_{k=0}^n \boldsymbol A^k \boldsymbol{BQB}^T \boldsymbol A^{k^T} \tag{18} \end{aligned} C[n]=Cs[n,n]=An+1CsAn+1T+k=0∑nAkBQBTAkT(18)
期望和方差的传播方程可以写为:
E[s[n]]=AE[s[n−1]](19) \boldsymbol E[\boldsymbol s[n]] = \boldsymbol A \boldsymbol E[\boldsymbol s [n-1]] \tag{19} E[s[n]]=AE[s[n−1]](19)
C[n]=AC[n−1]AT+BQBT(20) \boldsymbol C[n] = \boldsymbol A \boldsymbol C[n-1] \boldsymbol A^T + \boldsymbol {BQB}^T \tag{20} C[n]=AC[n−1]AT+BQBT(20)
更多推荐
所有评论(0)