CIFAR-10数据集下载及处理
下载cifar10并转成png照片
·
介绍
做这个主要是发现下载数据集,下载下来的都是些readme,batch什么的东东,不是我想看的那种直接的照片,就找了些资料,自己整整
看了readme官方的描述,下载的有5个batch的训练集和1个batch的测试集,每一个batch有10000张,就整了下面的代码
目录结构
└─data
├─cifar-10-batches-py
├─test
│ ├─0
│ ├─1
│ ├─2
│ ├─3
│ ├─4
│ ├─5
│ ├─6
│ ├─7
│ ├─8
│ └─9
└─train
├─0
├─1
├─2
├─3
├─4
├─5
├─6
├─7
├─8
└─9
代码
import numpy as np
import pickle
import os
from torchvision import datasets
from imageio import imwrite
#数据集放置路径
data_save_pth = "./data"
train_pth = os.path.join(data_save_pth, "train")
test_pth = os.path.join(data_save_pth, "test")
if not os.path.exists(train_pth and test_pth):
os.makedirs(train_pth)
os.makedirs(test_pth)
#解压路径
base_dit = "./data"
data_dir = os.path.join(base_dit,"cifar-10-batches-py")
train_o_dir = train_pth
test_o_dir = test_pth
# 数据集下载
def DataDownload():
datasets.CIFAR10(root=train_pth,train=True,download=True)
#创建目录
def my_mkdir(my_dir):
if not os.path.exists(my_dir):
os.makedirs(my_dir)
#解压缩包
def unpickle(file):
with open(file,"rb") as fo:
dict_ = pickle.load(fo,encoding="bytes")
return dict_
if __name__ == '__main__':
# DataDownload()
# unpickle(file="train_pth")
"""
解压缩步骤:
训练集
·遍历data_batch_12345所在路径
·unpickle解压存放在train_data里
·取train_data中的[b'data']
·使用imageio的imwrite方法保存
测试集同理
"""
#训练集
for j in range(1,6):
pth = os.path.join(data_dir,"data_batch_"+str(j))
train_data = unpickle(pth)
print(pth+"is loading...")
for i in range(0,10000):
#图片数据 train[b'data']的shape为1 需要还原为(3,32,32)
img = np.reshape(train_data[b'data'][i],(3,32,32))
img = img.transpose(1,2,0) #imwrite的input格式为(h,w,c)
label = str(train_data[b'labels'][i])
o_dir = os.path.join(train_o_dir,label)
my_mkdir(o_dir)
img_name = label + '_' +str(i+(j-1)*10000) + '.png'
img_pth = os.path.join(o_dir,img_name)
imwrite(img_pth,img)
print(pth + "loaded")
#测试集
test_data_pth = os.path.join(data_dir,"test_batch")
test_data = unpickle(test_data_pth)
for i in range(0, 10000):
# 图片数据
img = np.reshape(test_data[b'data'][i], (3, 32, 32))
img = img.transpose(1, 2, 0)
label = str(test_data[b'labels'][i])
o_dir = os.path.join(test_o_dir, label)
my_mkdir(o_dir)
img_name = label + '_' + str(i + (j - 1) * 10000) + '.png'
img_pth = os.path.join(o_dir, img_name)
imwrite(img_pth, img)
print("test_batch loaded")
如有错误,还请指正
更多推荐



所有评论(0)