在软件开发领域,设计模式长期以来一直是程序员的重要工具。但随着人工智能技术的快速发展,特别是大型语言模型(LLM)和AI Agent的出现,传统的设计模式可能不再完全适用。这个新兴领域还缺乏成熟的架构范式来指导开发。

基于我在系统架构方面的丰富经验,本文将介绍几种专为AI Agent应用设计的架构模式。这些模式旨在解决AI Agent开发中常见的挑战,包括:

  • 如何降低运营成本

  • 如何提高响应速度

  • 如何减少AI生成内容中的错误(也称为"幻觉")

AI大模型应用架构概述

===========================

1. 定义与特点

AI大模型应用架构(ALLMA)是一种基于深度学习的人工智能应用架构,旨在通过大规模数据处理和模型训练,构建高性能、高泛化能力的AI大模型,以支持复杂多样的应用场景。其特点包括模型规模大、数据需求高、算法复杂度高以及应用场景广泛等。

2. 关键技术

  • 深度学习:作为ALLMA架构的核心技术,深度学习使得AI大模型能够自动从数据中学习并提取特征,从而提高模型的准确性和鲁棒性。

  • 大规模数据预训练:利用海量无标注数据进行预训练,为模型提供丰富的先验知识,增强模型的泛化能力。

  • 指令微调:通过人工或自动化方式,对预训练模型进行针对性微调,以适应特定应用场景的需求。

路由分发架构模式

========================

路由分发架构模式的核心就是当用户输入一个 Prompt 查询时,该查询会被发送到路由转发模块,而路由转发模块则扮演着对输入 Prompt 进行分类的角色。

如果 Prompt 查询是可以识别的,那么它会被路由到小模型进行处理,这通常是一个更准确、响应更快且成本更低的操作。然而,如果 Prompt 查询无法被识别,那么它将由大模型来处理。尽管大模型的运行成本较高,但它能够成功返回更多种类型查询的答案。通过这种方式,大模型应用产品可以在成本、性能和用户体验之间实现平衡。

对于这种架构模式,它的核心特性有几点:

即时性:AI模型能够迅速响应用户输入,提供即时反馈。

简洁性:无需复杂的配置,简化了人机交互过程。

适合简单场景:适用于用户进行简单查询,如节日旅游建议等。

代理架构模式

======================

代理架构模式会同时支持多个生态系统进行混合,将多种能力融合到一起来完成复杂任务的处理,在任何一个生态系统中,都会有多个针对特定任务领域的专家,并行工作以处理特定类型的查询,然后将这些响应整合在一起,形成一个全面的答案。

这样的架构模式非常适合复杂的问题解决场景,在这种场景中,问题的不同方面需要不同的专业知识,就像一个由专家组成的小组,每个专家负责处理更大问题的一个方面。

更大的模型(比如:GPT-4)负责理解上下文,并将其分解为特定的任务或信息请求,这些任务或信息请求被传递给更小的代理模型。这些代理模型可能是较小模型,它们已经接受过特定任务的训练,或者是具有特定功能的通用模型,比如:BERT、Llama-2、上下文提示和函数调用。

对于这种架构模式,它的核心特性有几点:

专业深度:由于不同的方面会有专有模型进行处理,因此可以保证在具体领域的深入。

扩展性:可以通过扩展不同领域的专家模型,来实现整体系统能力的扩充。

适合复杂场景:适合复杂的问题解决场景,不同模型处理不同的任务。

基于缓存的微调 Agent 架构模式

==================================

基于缓存的微调 Agent 架构模式,在这个模式中我们将缓存和微调引入到大模型应用架构中,可以解决成本高、推理速度慢以及幻觉等组合问题。

通过缓存初始结果,能够在后续查询中迅速提供答案,从而显著提高了效率。

当我们累积了足够的数据后,微调层将启动,利用早期交互的反馈,进一步完善一个更为专业化的私有大模型。

专有私有大模型不仅简化了操作流程,也使专业知识更好地适应特定任务,使其在需要高度精确性和适应性的环境中,比如:客户服务或个性化内容创建,表现得更为高效。

对于刚入门的用户,可以选择使用预先构建的服务,比如:GPTCache,或者使用常见的缓存数据库:Redis、Cassandra、Memcached 来运行自己的服务。

对于这种架构模式,它的核心特性有几点:

持续改进:由于引入了微调机制进入架构,可以利用系统产生的数据来不断的优化自身。

个性化:结合私有模型和微调,可以更加容易适合用户的个性化需要。

适合深入场景:适合对使用场景问题的不断深入。

面向目标的 Agent 架构模式

================================

对于用户的 Prompt 提示词,Agent 会基于大模型先做规划(Planning),拆解成若干子任务,然后对每个子任务分别执行(Action),同时对每一步的执行结果进行观测(Observation),如果观测结果合格,就直接返回给用户最终答案,如果观测结果不合格或者执行出错,会重新进行规划(Replanning)。

这种面向目标的 Agent 架构模式非常常见,也是 AGI 大模型时代,每一个程序员同学都需要掌握的架构设计模式。

Agent 智能体组合架构模式

===============================

该架构设计模式强调了灵活性,通过模块化 AI 系统,能自我重新配置以优化任务性能。这就像一个多功能工具,可以根据需求选择和激活不同的功能模块,对于需要为各种客户需求或产品需求定制解决方案的企业来说,这是非常有效的。

我们可以通过使用各种自主代理框架和体系结构来开发每个 Agent 智能体,比如:CrewAI、Langchain、LLamaIndex、Microsoft Autogen 和 superAGI等。

通过组合不同的模块,一个 Agent 可以专注于预测,一个处理预约查询,一个专注于生成消息,一个 Agent 来更新数据库。将来,随着专业 AI 公司提供的特定服务的增多,我们可以将一个模块替换为外部或第三方服务,以处理特定的任务或领域的问题。

Agent 双重安全架构设计模式

================================

围绕大模型的核心安全性至少包含两个关键组件:一是用户组件,我们将其称为用户 Proxy 代理;二是防火墙,它为大模型提供了保护层。

用户 Proxy 代理在查询发出和返回的过程中对用户的 Prompt 查询进行拦截。该代理负责清除个人身份信息和知识产权信息,记录查询的内容,并优化成本。

防火墙则保护大模型及其所使用的基础设施。尽管我们对人们如何操纵大模型以揭示其潜在的训练数据、潜在功能以及当今恶意行为知之甚少,但我们知道这些强大的大模型是脆弱的。

在安全性相关的技术栈中,可能还存在其他安全层,但对于用户的查询路径来说,Proxy 代理和防火墙是最关键的。

如何系统的去学习大模型LLM ?

大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业?”“谁的饭碗又将不保了?”等问题热议不断。

事实上,抢你饭碗的不是AI,而是会利用AI的人。

科大讯飞、阿里、华为等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?

与其焦虑……

不如成为「掌握AI工具的技术人」,毕竟AI时代,谁先尝试,谁就能占得先机!

但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。

基于此,我用做产品的心态来打磨这份大模型教程,深挖痛点并持续修改了近70次后,终于把整个AI大模型的学习门槛,降到了最低!

在这个版本当中:

第一您不需要具备任何算法和数学的基础
第二不要求准备高配置的电脑
第三不必懂Python等任何编程语言

您只需要听我讲,跟着我做即可,为了让学习的道路变得更简单,这份大模型教程已经给大家整理并打包,现在将这份 LLM大模型资料 分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

👉CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)👈

一、LLM大模型经典书籍

AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。

在这里插入图片描述

二、640套LLM大模型报告合集

这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
在这里插入图片描述

三、LLM大模型系列视频教程

在这里插入图片描述

四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)

在这里插入图片描述

五、AI产品经理大模型教程

在这里插入图片描述

LLM大模型学习路线

阶段1:AI大模型时代的基础理解

  • 目标:了解AI大模型的基本概念、发展历程和核心原理。

  • 内容

    • L1.1 人工智能简述与大模型起源
    • L1.2 大模型与通用人工智能
    • L1.3 GPT模型的发展历程
    • L1.4 模型工程
    • L1.4.1 知识大模型
    • L1.4.2 生产大模型
    • L1.4.3 模型工程方法论
    • L1.4.4 模型工程实践
    • L1.5 GPT应用案例

阶段2:AI大模型API应用开发工程

  • 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。

  • 内容

    • L2.1 API接口
    • L2.1.1 OpenAI API接口
    • L2.1.2 Python接口接入
    • L2.1.3 BOT工具类框架
    • L2.1.4 代码示例
    • L2.2 Prompt框架
    • L2.3 流水线工程
    • L2.4 总结与展望

阶段3:AI大模型应用架构实践

  • 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。

  • 内容

    • L3.1 Agent模型框架
    • L3.2 MetaGPT
    • L3.3 ChatGLM
    • L3.4 LLAMA
    • L3.5 其他大模型介绍

阶段4:AI大模型私有化部署

  • 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。

  • 内容

    • L4.1 模型私有化部署概述
    • L4.2 模型私有化部署的关键技术
    • L4.3 模型私有化部署的实施步骤
    • L4.4 模型私有化部署的应用场景

这份 LLM大模型资料 包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

👉CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)👈

Logo

有“AI”的1024 = 2048,欢迎大家加入2048 AI社区

更多推荐