(二十二)张量场函数的散度与旋度
本文主要内容如下:1. 不变性微分算子2. 散度3. 旋度4. Laplace 算子
本文主要内容如下:
1. 不变性微分算子
Hamilton 算子(Nabla 算子)又称作不变性微分算子,这是因为它对张量场所作微分运算的形式不随坐标系的改变而改变,如:在不同坐标系 { X i ′ − G ⃗ i ′ } \{\mathscr{X}^{i'}-\vec{\mathscr{G}}_{i'}\} {Xi′−Gi′}与 { x i − g ⃗ i } \{x^i-\vec{g}_i\} {xi−gi} 中计算张量的梯度
▽ T = G ⃗ i ′ ∂ T ∂ X i ′ = G ⃗ i ′ ( ∂ T ∂ x j ∂ x j ∂ X i ′ ) = ( ∂ x j ∂ X i ′ G ⃗ i ′ ) ∂ T ∂ x j = ( β i ′ j G ⃗ i ′ ) ∂ T ∂ x j = g ⃗ j ∂ T ∂ x j \bigtriangledown\bold T =\vec{\mathscr{G}}^{i'}\dfrac{\partial\bold T}{\partial\mathscr{X}^{i'}} =\vec{\mathscr{G}}^{i'}\left(\dfrac{\partial\bold T}{\partial x^j}\frac{{\partial x^j}}{\partial\mathscr{X}^{i'}}\right) =\left(\frac{{\partial x^j}}{\partial\mathscr{X}^{i'}}\vec{\mathscr{G}}^{i'}\right)\dfrac{\partial\bold T}{\partial x^j} =(\beta^{j}_{i'}\vec{\mathscr{G}}^{i'})\dfrac{\partial\bold T}{\partial x^j} =\vec{g}^j\dfrac{\partial\bold T}{\partial x^j} ▽T=Gi′∂Xi′∂T=Gi′(∂xj∂T∂Xi′∂xj)=(∂Xi′∂xjGi′)∂xj∂T=(βi′jGi′)∂xj∂T=gj∂xj∂T
2. 散度
对于 r ( r ≥ 1 ) r(r\ge 1) r(r≥1) 阶张量场 T \bold T T,定义:
左散度: ▽ ⋅ T ≜ g ⃗ i ⋅ ∂ T ∂ x i ≜ d i v T 右散度: T ⋅ ▽ ≜ ∂ T ∂ x i ⋅ g ⃗ i 左散度:\bigtriangledown\cdot\bold{T}\triangleq\vec{g}^i\cdot\frac{\partial \bold T}{\partial x^i}\triangleq div\bold T\\\ \\ 右散度:\bold{T}\cdot\bigtriangledown\triangleq\frac{\partial \bold T}{\partial x^i}\cdot\vec{g}^i 左散度:▽⋅T≜gi⋅∂xi∂T≜divT 右散度:T⋅▽≜∂xi∂T⋅gi
显然,一般
▽ ⋅ T ≠ T ⋅ ▽ \bigtriangledown\cdot\bold{T}\ne\bold{T}\cdot\bigtriangledown ▽⋅T=T⋅▽
举例:
- 向量场的散度:
▽ ⋅ v ⃗ = v ⃗ ⋅ ▽ = v ; i i = v , i i + v j Γ i j i = v , i i + 1 g ∂ g ∂ x j v j = 1 g ∂ ( g v j ) ∂ x j \bigtriangledown\cdot\vec{v}=\vec{v}\cdot\bigtriangledown=v^i_{;i} =v^i_{,i}+v^j\Gamma_{ij}^{i} =v^i_{,i}+\dfrac{1}{\sqrt{g}}\dfrac{\partial\sqrt{g}}{\partial x^j}v^j =\dfrac{1}{\sqrt{g}}\dfrac{\partial(\sqrt{g}v^j)}{\partial x^j} ▽⋅v=v⋅▽=v;ii=v,ii+vjΓiji=v,ii+g1∂xj∂gvj=g1∂xj∂(gvj) - 二阶张量场的散度:
▽ ⋅ A = A ; i i j g ⃗ j = A ∙ j i ∣ ; i g ⃗ j A ⋅ ▽ = A ; j i j g ⃗ i = A i ∙ j ∣ ; j g ⃗ i \bigtriangledown\cdot\bold{A}=A^{ij}_{;i}\vec{g}_j=A_{\bullet j}^{i}|_{;i}\vec{g}^{j}\\\ \\ \bold{A}\cdot\bigtriangledown=A^{ij}_{;j}\vec{g}_i=A^{\bullet j}_{i}|_{;j}\vec{g}^{i} ▽⋅A=A;iijgj=A∙ji∣;igj A⋅▽=A;jijgi=Ai∙j∣;jgi
通过上式可知:对称二阶张量的左右散度相等。 - 三阶张量场的散度:
▽ ⋅ T = A ; i i j k g ⃗ j g ⃗ k A ⋅ ▽ = A ; j i k j g ⃗ i g ⃗ k \bigtriangledown\cdot\bold{T}=A^{ijk}_{;i}\vec{g}_j\vec{g}_k\\\ \\ \bold{A}\cdot\bigtriangledown=A^{ikj}_{;j}\vec{g}_i\vec{g}_k ▽⋅T=A;iijkgjgk A⋅▽=A;jikjgigk
书写规则:
- 由于梯度点乘时总是自带逆变基,因此为方便点积,将张量分量靠近Nabla 算子的指标取为逆变指标,从而省去度量张量的分量;
- 张量分量靠近Nabla 算子的指标与协变导数的坐标指标相同,其余指标与基向量的指标形成哑指标。
3. 旋度
对于 r ( r ≥ 1 ) r(r\ge 1) r(r≥1) 阶张量场 T \bold T T,定义:
左散度: ▽ × T ≜ g ⃗ i × ∂ T ∂ x i ≜ c u r l T = ϵ : ( ▽ T ) 右散度: T × ▽ ≜ ∂ T ∂ x i × g ⃗ i = ( T ▽ ) : ϵ 左散度:\bigtriangledown\times\bold{T}\triangleq\vec{g}^i\times\frac{\partial \bold T}{\partial x^i}\triangleq curl\bold T=\epsilon:(\bigtriangledown\bold{T})\\\ \\ 右散度:\bold{T}\times\bigtriangledown\triangleq\frac{\partial \bold T}{\partial x^i}\times\vec{g}^i=(\bold{T}\bigtriangledown):\epsilon 左散度:▽×T≜gi×∂xi∂T≜curlT=ϵ:(▽T) 右散度:T×▽≜∂xi∂T×gi=(T▽):ϵ
显然,一般
▽ × T ≠ T × ▽ \bigtriangledown\times\bold{T}\ne\bold{T}\times\bigtriangledown ▽×T=T×▽
举例:矢量场的旋度
▽ × v ⃗ = v j ; i ϵ i j k g ⃗ k = ( v j , i − v m Γ j i m ) ϵ i j k g ⃗ k = v j , i ϵ i j k g ⃗ k = 1 g ∣ g ⃗ 1 g ⃗ 2 g ⃗ 3 ∂ ∂ x 1 ∂ ∂ x 2 ∂ ∂ x 3 v 1 v 2 v 3 ∣ v ⃗ × ▽ = v j ; i ϵ j i k g ⃗ k = − ▽ × v ⃗ \bigtriangledown\times\vec{v}=v_{j;i}\epsilon^{ijk}\vec{g}_k =(v_{j,i}-v_m\Gamma^m_{ji})\epsilon^{ijk}\vec{g}_k =v_{j,i}\epsilon^{ijk}\vec{g}_k =\frac{1}{\sqrt{g}}\begin{vmatrix} \vec{g}_1 & \vec{g}_2 & \vec{g}_3 \\\\ \dfrac{\partial}{\partial x^1} & \dfrac{\partial}{\partial x^2} & \dfrac{\partial}{\partial x^3} \\\\ v_1 & v_2 & v_3 \end{vmatrix}\\\ \\ \vec{v}\times\bigtriangledown=v_{j;i}\epsilon^{jik}\vec{g}_k=-\bigtriangledown\times\vec{v} ▽×v=vj;iϵijkgk=(vj,i−vmΓjim)ϵijkgk=vj,iϵijkgk=g1
g1∂x1∂v1g2∂x2∂v2g3∂x3∂v3
v×▽=vj;iϵjikgk=−▽×v
书写规则:
- 由于梯度点乘时总是自带逆变基,为方便叉积,将张量分量靠近Nabla 算子的指标取为协变指标,从而省去度量张量的分量;
- 旋度的分量由协变导数与置换张量的逆变分量组成。
命题 给定向量场 v ⃗ \vec{v} v,则反对称张量场
1 2 ( v ⃗ ▽ − ▽ v ⃗ ) , 1 2 ( − v ⃗ ▽ + ▽ v ⃗ ) \dfrac{1}{2}(\vec{v}\bigtriangledown-\bigtriangledown\vec{v}),\dfrac{1}{2}(-\vec{v}\bigtriangledown+\bigtriangledown\vec{v}) 21(v▽−▽v),21(−v▽+▽v)
的对偶矢量分别为:
ω ⃗ 1 = 1 2 ( ▽ × v ⃗ ) , ω ⃗ 2 = 1 2 ( v ⃗ × ▽ ) \vec{\omega}_1=\dfrac{1}{2}(\bigtriangledown\times\vec{v}),\vec{\omega}_2=\dfrac{1}{2}(\vec{v}\times\bigtriangledown) ω1=21(▽×v),ω2=21(v×▽)
证明如下:
ω ⃗ = − 1 4 ϵ : ( v ⃗ ▽ − ▽ v ⃗ ) = − 1 4 ( v ⃗ × ▽ − ▽ × v ⃗ ) = 1 2 ▽ × v ⃗ \begin{aligned} &\vec{\omega}=-\dfrac{1}{4}\epsilon:(\vec{v}\bigtriangledown-\bigtriangledown\vec{v})\\\\ &\ \ =-\dfrac{1}{4}(\vec{v}\times\bigtriangledown-\bigtriangledown\times\vec{v})\\\\ &\ \ =\dfrac{1}{2}\bigtriangledown\times\vec{v} \end{aligned} ω=−41ϵ:(v▽−▽v) =−41(v×▽−▽×v) =21▽×v
4. Laplace 算子
定义 r ( r ≥ 1 ) r(r\ge 1) r(r≥1) 阶张量场 T \bold T T 的Laplace 算子:
▽ 2 T = ▽ ⋅ ( ▽ T ) = d i v ( g r a d T ) \bigtriangledown^2\bold T=\bigtriangledown\cdot(\bigtriangledown \bold T)=div(grad\bold T) ▽2T=▽⋅(▽T)=div(gradT)
若 ▽ 2 T = 0 \bigtriangledown^2\bold T=0 ▽2T=0 则称 T \bold T T 是调和的。
举例:标量场的Laplace 算子
▽ 2 ϕ = ▽ ⋅ ( ▽ ϕ ) = ▽ ⋅ ( ϕ , i g ⃗ i ) = g i j ( ϕ , i ) ; j = g i j ( ϕ , i j − ϕ , m Γ i j m ) = ( g i j ϕ , i ) ; j = ( g i j ϕ , i ) , j + g i m ϕ , i Γ m j j = ( g i m ϕ , i ) , m + g i m ϕ , i 1 g ∂ g ∂ x m = 1 g ∂ ( g g i m ϕ , i ) ∂ x m \begin{aligned} &\bigtriangledown^2\phi=\bigtriangledown\cdot(\bigtriangledown\phi)=\bigtriangledown\cdot(\phi_{,i}\vec{g}^i)\\\\ &\quad\quad\ =g^{ij}(\phi_{,i})_{;j}=g^{ij}(\phi_{,ij}-\phi_{,m}\Gamma^m_{ij})\\\\ &\quad\quad\ =(g^{ij}\phi_{,i})_{;j}=(g^{ij}\phi_{,i})_{,j}+g^{im}\phi_{,i}\Gamma^j_{mj}\\\\ &\quad\quad\ =(g^{im}\phi_{,i})_{,m}+g^{im}\phi_{,i}\frac{1}{\sqrt{g}}\frac{\partial \sqrt{g}}{\partial x^m}=\frac{1}{\sqrt{g}}\frac{\partial (\sqrt{g}g^{im}\phi_{,i})}{\partial x^m} \end{aligned} ▽2ϕ=▽⋅(▽ϕ)=▽⋅(ϕ,igi) =gij(ϕ,i);j=gij(ϕ,ij−ϕ,mΓijm) =(gijϕ,i);j=(gijϕ,i),j+gimϕ,iΓmjj =(gimϕ,i),m+gimϕ,ig1∂xm∂g=g1∂xm∂(ggimϕ,i)
更多推荐
所有评论(0)