Backstepping反步法控制四旋翼无人机(2)
目录跟踪误差坐标变换考虑以下非线性系统{x˙1=x2+f1(x1)x˙2=u+f2(x1,x2)y=x1\begin{cases}\begin{aligned}\dot{x}_1&=x_2+f_1(x_1) \\\dot{x}_2&=u+f_2(x_1,x_2) \\y&=x_1\end{aligned}\end{cases}⎩⎪⎨⎪⎧x˙1x˙2y=x2+f1
考虑以下非线性系统
{ x ˙ 1 = x 2 + f 1 ( x 1 ) x ˙ 2 = u + f 2 ( x 1 , x 2 ) y = x 1 \begin{cases} \begin{aligned} \dot{x}_1&=x_2+f_1(x_1) \\ \dot{x}_2&=u+f_2(x_1,x_2) \\ y&=x_1 \end{aligned} \end{cases} ⎩⎪⎨⎪⎧x˙1x˙2y=x2+f1(x1)=u+f2(x1,x2)=x1
跟踪误差
定义跟踪误差 z 1 = y − y r z_1=y-y_r z1=y−yr 其中 y r y_r yr为参考信号(期望信号)。
则对 z 1 z_1 z1求导
z ˙ 1 = y ˙ − y ˙ r = x 2 + f 1 ( x 1 ) − y ˙ r \begin{aligned} \dot{z}_1&=\dot{y}-\dot{y}_r \\&=x_2+f_1(x_1)-\dot{y}_r \end{aligned} z˙1=y˙−y˙r=x2+f1(x1)−y˙r
若把 x 2 x_2 x2看做某种控制输入,并选择
x 2 = − c 1 z 1 − f 1 ( x 1 ) + y ˙ r ( c 1 > 0 ) x_2=-c_1z_1-f_1(x_1)+\dot{y}_r \quad (c_1>0) x2=−c1z1−f1(x1)+y˙r(c1>0)
那么这样一来
z ˙ 1 = − c 1 z 1 \dot{z}_1=-c_1z_1 z˙1=−c1z1
现考虑李雅普诺夫函数
V 1 = 1 2 z 1 2 V_1=\frac{1}{2}z_1^2 V1=21z12
求导有
V ˙ 1 = z 1 z ˙ 1 = − c 1 z 1 2 ≤ 0 \begin{aligned} \dot{V}_1&=z_1\dot{z}_1\\ &=-c_1z_1^2 \leq 0 \end{aligned} V˙1=z1z˙1=−c1z12≤0
然而 x 2 x_2 x2不是控制输入,故 x 2 x_2 x2称为虚拟控制,记为
α 1 = − c 1 z 1 − f 1 ( x 1 ) + y ˙ r \alpha_1=-c_1z_1-f_1(x_1)+\dot{y}_r α1=−c1z1−f1(x1)+y˙r
则 z ˙ 1 \dot{z}_1 z˙1可表示为
z ˙ 1 = x 2 − α 1 − c 1 z 1 \dot{z}_1=x_2-\alpha_1-c_1z_1 z˙1=x2−α1−c1z1
此时 V ˙ 1 \dot{V}_1 V˙1记为
z 1 z ˙ 1 = z 1 ( x 1 − α 1 − c 1 z 1 ) = z 1 ( x 2 − α 1 ) − c 1 z 1 2 \begin{aligned} z_1\dot{z}_1&=z_1(x_1-\alpha_1-c_1z_1)\\&=z_1(x_2-\alpha_1)-c_1z_1^2 \end{aligned} z1z˙1=z1(x1−α1−c1z1)=z1(x2−α1)−c1z12
坐标变换
定义坐标变换
z 2 = x 2 − α 1 z_2=x_2-\alpha_1 z2=x2−α1
则
z ˙ 2 = x ˙ 2 − α ˙ 1 = u + f 2 ( x 1 , x 2 ) + ( c 1 z ˙ 1 + f ˙ 1 ( x 1 ) − y ¨ r ) = u + f 2 ( x 1 , x 2 ) − ( ∂ α 1 ∂ y r ⋅ y ˙ r + ∂ α 1 ∂ y ˙ r ⋅ y ˙ r + ∂ α 1 ∂ x 1 ⋅ x ˙ 1 ) = u + f 2 ( x 1 , x 2 ) − ∂ α 1 ∂ x 1 [ x 1 + f 1 ( x 1 ) ] − ∂ α 1 ∂ y r y ˙ r − ∂ α 1 ∂ y ˙ r y ¨ r \begin{aligned} \dot{z}_2&=\dot{x}_2-\dot{\alpha}_1\\ &=u+f_2(x_1,x_2)+(c_1\dot{z}_1+\dot{f}_1(x_1)-\ddot{y}_r)\\ &=u+f_2(x_1,x_2)-(\frac{\partial \alpha_1}{\partial y_r} \cdot \dot{y}_r+\frac{\partial \alpha_1}{\partial \dot{y}_r} \cdot \dot{y}_r + \frac{\partial \alpha_1}{\partial x_1} \cdot \dot{x}_1)\\ &=u+f_2(x_1,x_2)- \frac{\partial \alpha_1}{\partial x_1}[x_1+f_1(x_1)]- \frac{\partial \alpha_1}{\partial y_r} \dot{y}_r - \frac{\partial \alpha_1}{\partial \dot{y}_r} \ddot{y}_r \end{aligned} z˙2=x˙2−α˙1=u+f2(x1,x2)+(c1z˙1+f˙1(x1)−y¨r)=u+f2(x1,x2)−(∂yr∂α1⋅y˙r+∂y˙r∂α1⋅y˙r+∂x1∂α1⋅x˙1)=u+f2(x1,x2)−∂x1∂α1[x1+f1(x1)]−∂yr∂α1y˙r−∂y˙r∂α1y¨r
令
u = − z 1 − c 2 z 2 − f 2 ( x 1 , x 2 ) + ∂ α 1 ∂ x 1 [ x 1 + f 1 ( x 1 ) ] + ∂ α 1 ∂ y r y ˙ r + ∂ α 1 ∂ y ˙ r y ¨ r u=-z_1-c_2z_2-f_2(x_1,x_2)+\frac{\partial \alpha_1}{\partial x_1}[x_1+f_1(x_1)]+ \frac{\partial \alpha_1}{\partial y_r} \dot{y}_r + \frac{\partial \alpha_1}{\partial \dot{y}_r} \ddot{y}_r u=−z1−c2z2−f2(x1,x2)+∂x1∂α1[x1+f1(x1)]+∂yr∂α1y˙r+∂y˙r∂α1y¨r
则 z ˙ 2 = − z 1 − c 2 z 2 \dot{z}_2=-z_1-c_2z_2 z˙2=−z1−c2z2。
再设
V 2 = V 1 + 1 2 z 2 2 = 1 2 z 1 2 + 1 2 z 2 2 \begin{aligned} V_2&=V_1+\frac{1}{2}z_2^2\\ &=\frac{1}{2}z_1^2+\frac{1}{2}z_2^2 \end{aligned} V2=V1+21z22=21z12+21z22
则
V ˙ 2 = z 1 ( x 2 − α 1 ) − c 1 z 1 2 + z 2 ( − z 1 − c 2 z 2 ) = z 1 z 2 − c 1 z 1 2 − z 1 z 2 − c 2 z 2 2 = − c 1 z 1 2 − c 2 z 2 2 ≤ 0 \begin{aligned} \dot{V}_2&=z_1(x_2-\alpha_1)-c_1z_1^2+z_2(-z_1-c_2z_2)\\ &=z_1z_2-c_1z_1^2-z_1z_2-c_2z_2^2\\ &=-c_1z_1^2-c_2z_2^2 \leq 0 \end{aligned} V˙2=z1(x2−α1)−c1z12+z2(−z1−c2z2)=z1z2−c1z12−z1z2−c2z22=−c1z12−c2z22≤0
这样一来即可满足李雅普诺夫稳定性。
在以后的文章中,会把反步法应用到四旋翼的控制中去,并详细解释用simulink进行建模的过程。
更多推荐
所有评论(0)