华里士公式的推导及其推广
华里士公式的推导和推广。
华里士公式的推导及其推广
基础知识
华里士公式
In=∫0π2sinnxdx=∫0π2cosnxdx={n−1nn−3n−2⋯23n is odd,n−1nn−3n−2⋯12π2n is even \Large \begin{aligned} I_n = \int_{0}^{\frac{\pi}{2}} \sin^n{x} \mathrm{d}x = \int_{0}^{\frac{\pi}{2}} \cos^n{x} \mathrm{d}x = \begin{cases} \frac{n-1}{n} \frac{n-3}{n-2} \cdots \frac{2}{3} &&n\ is\ odd,\\ \\ \frac{n-1}{n} \frac{n-3}{n-2} \cdots \frac{1}{2} \frac{\pi}{2} &&n\ is\ even \end{cases} \end{aligned} In=∫02πsinnxdx=∫02πcosnxdx=⎩⎪⎪⎪⎪⎨⎪⎪⎪⎪⎧nn−1n−2n−3⋯32nn−1n−2n−3⋯212πn is odd,n is even
基础公式的推导
仅以sinnx\sin^n{x}sinnx为例,有
In=−∫0π2sinn−1xdcosx=−sinn−1x⋅cosx∣0π2+∫0π2(n−1)⋅cos2x⋅sinn−2xdx=(n−1)∫0π2(1−sin2x)⋅sinn−2xdx=(n−1)In−2−(n−1)In \large \begin{aligned} I_n &= -\int_{0}^{\frac{\pi}{2}} \sin^{n-1}{x} \mathrm{d}{\cos{x}} \\[2ex] &= -\left. \sin^{n-1}x\cdot\cos{x} \right|_{0}^{\frac{\pi}{2}} + \int_{0}^{\frac{\pi}{2}} (n - 1)\cdot\cos^2{x} \cdot \sin^{n-2}{x} \mathrm{d}{x} \\[2ex] &= (n-1) \int_{0}^{\frac{\pi}{2}} (1-\sin^2{x}) \cdot \sin^{n-2}{x} \mathrm{d}x \\[2ex] &= (n-1) I_{n-2} - (n-1) I_n \end{aligned} In=−∫02πsinn−1xdcosx=−sinn−1x⋅cosx∣∣∣02π+∫02π(n−1)⋅cos2x⋅sinn−2xdx=(n−1)∫02π(1−sin2x)⋅sinn−2xdx=(n−1)In−2−(n−1)In
即
In=n−1nIn−2 \Large I_n = \frac{n-1}{n}I_{n-2} In=nn−1In−2
分情况讨论,求出通项公式,即可得原式成立。
华里士公式的推广
推广公式
∫0m2πsinnxdx={mInn is even,Inn is odd, m=2k+1,2Inn is odd, m=4k+2,0n is odd, m=4k \Large \begin{aligned} &\int_{0}^{\frac{m}{2}{\pi}} \sin^n{x} \mathrm{d}x = \begin{cases} m I_n &n\ is\ even,\\ \\ I_n &n\ is\ odd,\ \ m=2k+1,\\ \\ 2I_n &n\ is\ odd,\ \ m=4k+2,\\ \\ 0 &n\ is\ odd,\ \ m=4k \end{cases} \end{aligned} ∫02mπsinnxdx=⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎧mInIn2In0n is even,n is odd, m=2k+1,n is odd, m=4k+2,n is odd, m=4k
∫0m2πcosnxdx={mInn is even,Inn is odd, m=4k+1,−Inn is odd, m=4k+3,0n is odd, m=2k \Large \begin{aligned} &\int_{0}^{\frac{m}{2}{\pi}} \cos^n{x} \mathrm{d}x = \begin{cases} m I_n &n\ is\ even,\\ \\ I_n &n\ is\ odd,\ \ m=4k+1,\\ \\ -I_n &n\ is\ odd,\ \ m=4k+3,\\ \\ 0 &n\ is\ odd, \ \ m=2k \end{cases} \end{aligned} ∫02mπcosnxdx=⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎧mInIn−In0n is even,n is odd, m=4k+1,n is odd, m=4k+3,n is odd, m=2k
当 m=1m=1m=1 时,该公式退化为原华里士公式。
推广公式的图像理解
这是 f(x)=sin3xf(x)=\sin^3xf(x)=sin3x 的图像(对应n为奇数时的情况):
由图可知,f(x)f(x)f(x) 是以 2π2\pi2π 为周期的周期函数,且函数在[0,π2][0, \frac{\pi}{2}][0,2π] 与 [π2,π][\frac{\pi}{2}, \pi][2π,π] 的部分各自与x轴围成的面积相等,函数在[0,π][0, \pi][0,π] 与 [π,2π][\pi, 2\pi][π,2π] 的部分各自与x轴围成的面积也相等。
这是 f(x)=sin4xf(x)=\sin^4xf(x)=sin4x 的图像(对应n为偶数时的情况):
由图可知,f(x)f(x)f(x) 是以 π\piπ 为周期的周期函数,且函数在[0,π2][0, \frac{\pi}{2}][0,2π] 与 [π2,π][\frac{\pi}{2}, \pi][2π,π] 的部分各自与x轴围成的面积相等。
故无论m的值为多少,积分值都是 [0,π2][0, \frac{\pi}{2}][0,2π] 的 mmm 倍。
推广公式的特例
m=2
∫0πsinnxdx=2In∫0πcosnxdx={2Inn is even0n is odd \Large \begin{aligned} &\int_{0}^{\pi} \sin^n{x} \mathrm{d}x = 2I_n \\[4ex] \Large &\int_{0}^{\pi} \cos^n{x} \mathrm{d}x = \begin{cases} 2I_n \quad &n\ is\ even \\[2ex] 0 \quad &n\ is\ odd \end{cases} \end{aligned} ∫0πsinnxdx=2In∫0πcosnxdx=⎩⎪⎪⎪⎨⎪⎪⎪⎧2In0n is evenn is odd
m=4
∫02πsinnxdx=∫02πcosnxdx={4Inn is even0n is odd \Large \begin{aligned} \int_{0}^{2\pi} \sin^n{x} \mathrm{d}x = \int_{0}^{2\pi} \cos^n{x} \mathrm{d}x = \begin{cases} 4I_n \quad &n\ is\ even \\[2ex] 0 \quad &n\ is\ odd \end{cases} \end{aligned} ∫02πsinnxdx=∫02πcosnxdx=⎩⎪⎪⎪⎨⎪⎪⎪⎧4In0n is evenn is odd
更多推荐
所有评论(0)