test_custom.py
path_rm = ['/ai/DataSets/TopViewMultiTaskPerc_xmlin/roadmarking/annotations/20240411_生态园and保定对向路沿/2task_rm_20240405_wuluhong/2task_rm_20240405_wuluhong_gt.txt']#/ai/DataSets/OD_FSD_zh/psd_v2.0/data/83
import argparse
import json
import os
from pathlib import Path
from threading import Thread
import numpy as np
import torch
import yaml
from tqdm import tqdm
from models.experimental import attempt_load
from utils.datasets import create_dataloader
from utils.general import coco80_to_coco91_class, check_dataset, check_file, check_img_size, check_requirements, \
box_iou, non_max_suppression, scale_coords, xyxy2xywh, xywh2xyxy, set_logging, increment_path, colorstr
from utils.metrics import ap_per_class, ConfusionMatrix, batch_pix_accuracy,batch_pix_accuracy_class, batch_intersection_union # 后两个新增分割
from utils.plots import plot_images, output_to_target, plot_study_txt
from utils.torch_utils import select_device, time_synchronized
import torch.nn.functional as F
import cv2
from models.yolo import Model
from utils.loss import ComputeLoss, SegmentationLosses, SegFocalLoss, OhemCELoss, ProbOhemCrossEntropy2d,PoseLoss
import SegmentationDataset
"""
test_custom.py与test.py的区别仅在加载器上从Cityscapes改成了Custom
新版训练测试(loader的mode为"testval")可以把验证集长边resize到base-size输入到网络, 但mask仍然是原图尺寸, 以下代码自动把网络输出双线性插值到原图算指标
调用示例:
python test.py --data cityscapes_det.yaml --segdata ./data/citys --weights ./best.pt --img-size 640 --base-size 640
即相比原版yolov5多 --segdata 和 --base-size两个参数
"""
Cityscapes_COLORMAP = [
# [128, 64, 128],
[0,0,0],
[244, 35, 232],
[0, 0, 192],
[70, 70, 70],
[102, 102, 0],
[190, 153, 153],
[153, 153, 153],
[250, 170, 30],
[220, 220, 0],
[107, 142, 35],
[152, 251, 152],
[0, 130, 180],
[220, 20, 60],
[255, 0, 0],
[0, 0, 70],
[0, 60, 100],
[0, 80, 100],
[0, 0, 230],
[119, 11, 32],
]
def attempt_load(weights, map_location=None):
# Loads an ensemble of models weights=[a,b,c] or a single model weights=[a] or weights=a
model = Ensemble()
for w in weights if isinstance(weights, list) else [weights]:
attempt_download(w)
ckpt = torch.load(w, map_location=map_location) # load
# model.append(ckpt['ema' if ckpt.get('ema') else 'model'].float().fuse().eval()) # FP32 model
model.append(ckpt['ema' if ckpt.get('ema') else 'model'].float().fuse().eval()) # FP32 model
# Compatibility updates
for m in model.modules():
if type(m) in [nn.Hardswish, nn.LeakyReLU, nn.ReLU, nn.ReLU6, nn.SiLU]:
m.inplace = True # pytorch 1.7.0 compatibility
elif type(m) is Conv:
m._non_persistent_buffers_set = set() # pytorch 1.6.0 compatibility
if len(model) == 1:
return model[-1] # return model
else:
print('Ensemble created with %s\n' % weights)
for k in ['names', 'stride']:
setattr(model, k, getattr(model[-1], k))
return model # return ensemble
def label2image(pred, COLORMAP=Cityscapes_COLORMAP):
colormap = np.array(COLORMAP, dtype='uint8')
X = pred.astype('int32')
return colormap[X, :]
def seg_validation(model, n_segcls, valloader, device, half_precision=True):
# Fast test during the training
def eval_batch(model, image, target, half):
# torch.Size([64, 2, 544, 480])
# torch.Size([64, 14, 544, 480])
# outputs = gather(outputs, 0, dim=0)
if n_segcls == 2:
pred = outputs[1][0] # 1是分割
if n_segcls == 14:
pred = outputs[1][1]
target = target.to(device, non_blocking=True)
pred = F.interpolate(pred, (target.shape[1], target.shape[2]), mode='bilinear', align_corners=True)
maskpred = F.interpolate(pred, (target.shape[1], target.shape[2]), mode='bilinear', align_corners=True)[0]
mask = label2image(maskpred.max(axis=0)[1].cpu().numpy(), Cityscapes_COLORMAP)[:, :, ::-1]
correct, labeled,total_pixel = batch_pix_accuracy_class(pred.data, target,n_segcls)
inter, union = batch_intersection_union(pred.data, target, n_segcls)
return correct, labeled, inter, union,total_pixel,mask
half = device.type != 'cpu' and half_precision # half precision only supported on CUDA
if half:
model.half()
model.eval()
total_inter, total_union, total_correct, total_label = 0, 0, 0, 0
total_c = []
tbar = tqdm(valloader, desc='\r')
numtime = 1
for i, (image, target) in enumerate(tbar):
image = image.to(device, non_blocking=True)
image = image.half() if half else image.float()
with torch.no_grad():
correct, labeled, inter, union ,total_pixel,mask= eval_batch(model, image, target, half)
#将测试集中的图片进行可视化保存
# imagename = (image[0].cpu().numpy().transpose(1,2,0) * 255).astype('uint8')
# dst_fsd = cv2.addWeighted(mask, 0.4, imagename, 0.6, 0)
# cv2.imwrite('/ai/zhdata/multiyolov5_point_v2/image/FSD/train_v30_zh_20240805_FSD/1/' + str(i) + '.jpg', dst_fsd)
#将测试集中的图片进行可视化保存
total_correct += correct
total_label += labeled
total_inter += inter
total_union += union
total_c += total_pixel
pixAcc = 1.0 * total_correct / (np.spacing(1) + total_label)
total_c = np.array(total_c)
pixAcc_class = 1.0 * total_c[:,0] / (np.spacing(1) + total_c[:,1])
IoU = 1.0 * total_inter / (np.spacing(1) + total_union)
numtime += 1
mIoU = IoU.mean()
# tbar.set_description(
# 'pixAcc: %.3f, mIoU: %.3f' % (pixAcc, mIoU))
if i >= len(tbar) - 1:
print('mIoU= ',str(mIoU))
for j in range(len(IoU)):
print("class:" + str(j) + "result------" +str(IoU[j]) + "--ACC----" + str(pixAcc_class[j]))
if len(IoU) == 14:
tbar.set_description(
'Acc: %.2f, mIoU: %.2f, 0: %.2f, 1: %.2f, 2: %.2f, 3: %.2f, 4: %.2f, 5: %.2f, 6: %.2f, 7: %.2f, 8: %.2f, 9: %.2f, 10: %.2f, 11: %.2f, 12: %.2f, 13: %.2f ' % (pixAcc, mIoU, IoU[0], IoU[1], IoU[2], IoU[3], IoU[4] \
, IoU[5], IoU[6], IoU[7], IoU[8], IoU[9], IoU[10], IoU[11], IoU[12], IoU[13]))
# tbar.set_description(
# 'Acc: %.2f, Acc: %.2f, 0: %.2f, 1: %.2f, 2: %.2f, 3: %.2f, 4: %.2f, 5: %.2f, 6: %.2f, 7: %.2f, 8: %.2f, 9: %.2f, 10: %.2f, 11: %.2f, 12: %.2f, 13: %.2f ' % (pixAcc, mIoU, IoU[0], IoU[1], IoU[2], IoU[3], IoU[4] \
# , IoU[5], IoU[6], IoU[7], IoU[8], IoU[9], IoU[10], IoU[11], IoU[12], IoU[13]))
# tbar.set_description(
# 'Acc: %.2f, mIoU: %.2f, 0: %.2f, 1: %.2f, 2: %.2f, 3: %.2f, 4: %.2f, 5: %.2f, 6: %.2f ' % (pixAcc, mIoU, IoU[0], IoU[1], IoU[2], IoU[3], IoU[4] \
# , IoU[5], IoU[6]))
if len(IoU) == 2:
tbar.set_description(
'pixAcc: %.3f, mIoU: %.3f, class0: %.3f, class1: %.3f' % (pixAcc, mIoU, IoU[0], IoU[1]))
return mIoU,IoU
def segtest(weights, root="data/citys", batch_size=16, half_precision=True, n_segcls=19, base_size=2048): # 会使用原始尺寸测, 未考虑尺寸对不齐, 图片尺寸应为32倍数
device = select_device(opt.device, batch_size=batch_size)
model = attempt_load(weights, map_location=device) # load FP32 model
testvalloader = SegmentationDataset.get_rm_loader(root, batch_size=batch_size, split="val", mode="val", workers=8, base_size=base_size) #get_custom_loader
# testvalloader = SegmentationDataset.get_citys_loader(root, batch_size=batch_size, split="val", mode="val", workers=4, base_size=1024, crop_size=1024)
seg_validation(model, n_segcls, testvalloader, device, half_precision)
def segtest_fsd(weights, root="data/citys", batch_size=16, half_precision=True, n_segcls=19, base_size=2048): # 会使用原始尺寸测, 未考虑尺寸对不齐, 图片尺寸应为32倍数
device = select_device(opt.device, batch_size=batch_size)
model = attempt_load(weights, map_location=device) # load FP32 model
testvalloader = SegmentationDataset.get_custom_loader(root, batch_size=batch_size, split="val", mode="val", workers=8, base_size=base_size) #get_custom_loader
# testvalloader = SegmentationDataset.get_citys_loader(root, batch_size=batch_size, split="val", mode="val", workers=4, base_size=1024, crop_size=1024)
seg_validation(model, n_segcls, testvalloader, device, half_precision)
def test(data,
weights=None,
batch_size=64,
imgsz=640,
conf_thres=0.001,
iou_thres=0.6, # for NMS
save_json=False,
single_cls=False,
augment=False,
verbose=False,
model=None,
dataloader=None,
save_dir=Path(''), # for saving images
save_txt=False, # for auto-labelling
save_hybrid=False, # for hybrid auto-labelling
save_conf=False, # save auto-label confidences
plots=False,
wandb_logger=None,
compute_loss=False,
half_precision=True,
is_coco=False):
# Initialize/load model and set device
training = model is not None
if training: # called by train.py
device = next(model.parameters()).device # get model device
else: # called directly
set_logging()
device = select_device(opt.device, batch_size=batch_size)
# Directories
save_dir = Path(increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok)) # increment run
(save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir
# Load model
model = attempt_load(weights, map_location=device) # load FP32 model
# model = Model(opt.cfg, ch=3, nc=3).to('cpu') # create
gs = max(int(model.stride.max()), 32) # grid size (max stride)
imgsz = check_img_size(imgsz, s=gs) # check img_size
# Multi-GPU disabled, incompatible with .half() https://github.com/ultralytics/yolov5/issues/99
# if device.type != 'cpu' and torch.cuda.device_count() > 1:
# model = nn.DataParallel(model)
# Half
half = device.type != 'cpu' and half_precision # half precision only supported on CUDA
# half = False
if half:
model.half()
# Configure
model.eval()
if isinstance(data, str):
is_coco = data.endswith('coco.yaml')
with open(data) as f:
data = yaml.load(f, Loader=yaml.SafeLoader)
check_dataset(data) # check
nc = 1 if single_cls else int(data['nc']) # number of classes
iouv = torch.linspace(0.5, 0.95, 10).to(device) # iou vector for mAP@0.5:0.95
niou = iouv.numel()
# Logging
log_imgs = 0
if wandb_logger and wandb_logger.wandb:
log_imgs = min(wandb_logger.log_imgs, 100)
# Dataloader
if not training:
if device.type != 'cpu':
model(torch.zeros(1, 3, imgsz, imgsz).to(device).type_as(next(model.parameters()))) # run once
task = opt.task if opt.task in ('train', 'val', 'test') else 'val' # path to train/val/test images
dataloader = create_dataloader(data[task], imgsz, batch_size, gs, opt, pad=0.5, rect=True,
prefix=colorstr(f'{task}: '))[0]
#/ai/DataSets/OD_FSD_zh/psd_v2.0/data/txt_dataset/ann_zh/test_img_list_v5.txt
#data[task]
#/ai/DataSets/OD_FSD_zh/psd_v2.0/data/83_psd_20240723_占用属性优化/alldata/test_img_list.txt
seen = 0
confusion_matrix = ConfusionMatrix(nc=nc)
names = {k: v for k, v in enumerate(model.names if hasattr(model, 'names') else model.module.names)}
coco91class = coco80_to_coco91_class()
s = ('%20s' + '%12s' * 6) % ('Class', 'Images', 'Labels', 'P', 'R', 'mAP@.5', 'mAP@.5:.95')
p, r, f1, mp, mr, map50, map, t0, t1 = 0., 0., 0., 0., 0., 0., 0., 0., 0.
loss = torch.zeros(3, device=device)
jdict, stats, ap, ap_class, wandb_images = [], [], [], [], []
numtotal = 0
numocc,numvip,numwoman,numdisabled,numcharging = 0,0,0,0,0
for batch_i, (img, targets, paths, shapes) in enumerate(tqdm(dataloader, desc=s)):
img = img.to(device, non_blocking=True)
img = img.half() if half else img.float() # uint8 to fp16/32
img /= 255.0 # 0 - 255 to 0.0 - 1.0
targets = targets.to(device)
nb, _, height, width = img.shape # batch size, channels, height, width
with torch.no_grad():
# Run model
t = time_synchronized()
out, train_out = model(img, augment=augment)[0] # inference and training outputs 修改[0]新模型输出[0]是检测
t0 += time_synchronized() - t
# Compute loss
if compute_loss:
# Hyperparameters 配置超参数
with open(opt.hyp) as f:
hyp = yaml.load(f, Loader=yaml.SafeLoader) # load hyps
model.hyp = hyp
model.gr = 1.0
compute_loss = PoseLoss(model)
loss += compute_loss([x.float() for x in train_out], targets)[1][:3] # box, obj, cls
# Run NMS
targets[:, 2:6] *= torch.Tensor([width, height, width, height]).to(device) # to pixels
lb = [targets[targets[:, 0] == i, 1:] for i in range(nb)] if save_hybrid else [] # for autolabelling
t = time_synchronized()
out = non_max_suppression(out, conf_thres=conf_thres, iou_thres=iou_thres, labels=lb, multi_label=False)
t1 += time_synchronized() - t
# Statistics per image
for si, pred in enumerate(out):
perd_slot = pred[:, 14:]
pred = torch.cat((pred[:, :5], pred[:, 13:14]), 1)
labels = targets[targets[:, 0] == si, 1:]
nl = len(labels)
tcls = labels[:, 0].tolist() if nl else [] # target class
tocc = labels[:, 13].tolist() if nl else []
tvip = labels[:, 14].tolist() if nl else []
twoman = labels[:, 15].tolist() if nl else []
tdisable = labels[:, 16].tolist() if nl else []
tcharging = labels[:, 17].tolist() if nl else []
path = Path(paths[si])
seen += 1
if len(pred) == 0:
if nl:
stats.append((torch.zeros(0, niou, dtype=torch.bool), torch.Tensor(), torch.Tensor(), tcls))
continue
# Predictions
predn = pred.clone()
scale_coords(img[si].shape[1:], predn[:, :4], shapes[si][0], shapes[si][1]) # native-space pred
# Append to text file
if save_txt:
gn = torch.tensor(shapes[si][0])[[1, 0, 1, 0]] # normalization gain whwh
for *xyxy, conf, cls in predn.tolist():
xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh
line = (cls, *xywh, conf) if save_conf else (cls, *xywh) # label format
with open(save_dir / 'labels' / (path.stem + '.txt'), 'a') as f:
f.write(('%g ' * len(line)).rstrip() % line + '\n')
# W&B logging - Media Panel Plots
if len(wandb_images) < log_imgs and wandb_logger.current_epoch > 0: # Check for test operation
if wandb_logger.current_epoch % wandb_logger.bbox_interval == 0:
box_data = [{"position": {"minX": xyxy[0], "minY": xyxy[1], "maxX": xyxy[2], "maxY": xyxy[3]},
"class_id": int(cls),
"box_caption": "%s %.3f" % (names[cls], conf),
"scores": {"class_score": conf},
"domain": "pixel"} for *xyxy, conf, cls in pred.tolist()]
boxes = {"predictions": {"box_data": box_data, "class_labels": names}} # inference-space
wandb_images.append(wandb_logger.wandb.Image(img[si], boxes=boxes, caption=path.name))
wandb_logger.log_training_progress(predn, path, names) if wandb_logger and wandb_logger.wandb_run else None
# Append to pycocotools JSON dictionary
if save_json:
# [{"image_id": 42, "category_id": 18, "bbox": [258.15, 41.29, 348.26, 243.78], "score": 0.236}, ...
image_id = int(path.stem) if path.stem.isnumeric() else path.stem
box = xyxy2xywh(predn[:, :4]) # xywh
box[:, :2] -= box[:, 2:] / 2 # xy center to top-left corner
for p, b in zip(pred.tolist(), box.tolist()):
jdict.append({'image_id': image_id,
'category_id': coco91class[int(p[5])] if is_coco else int(p[5]),
'bbox': [round(x, 3) for x in b],
'score': round(p[4], 5)})
# Assign all predictions as incorrect
correct = torch.zeros(pred.shape[0], niou, dtype=torch.bool, device=device)
if nl:
detected = [] # target indices
tcls_tensor = labels[:, 0]
# target boxes
tbox = xywh2xyxy(labels[:, 1:5])
scale_coords(img[si].shape[1:], tbox, shapes[si][0], shapes[si][1]) # native-space labels
if plots:
confusion_matrix.process_batch(predn, torch.cat((labels[:, 0:1], tbox), 1))
# Per target class
for cls in torch.unique(tcls_tensor):
ti = (cls == tcls_tensor).nonzero(as_tuple=False).view(-1) # prediction indices
pi = (cls == pred[:, 5]).nonzero(as_tuple=False).view(-1) # target indices
# Search for detections
if pi.shape[0]:
# Prediction to target ious
ious, i = box_iou(predn[pi, :4], tbox[ti]).max(1) # best ious, indices
# Append detections
detected_set = set()
for j in (ious > iouv[0]).nonzero(as_tuple=False):
d = ti[i[j]] # detected target
if d.item() not in detected_set:
detected_set.add(d.item())
detected.append(d)
correct[pi[j]] = ious[j] > iouv # iou_thres is 1xn
if len(detected) == nl: # all targets already located in image
break
# Append statistics (correct, conf, pcls, tcls)
stats.append((correct.cpu(), pred[:, 4].cpu(), pred[:, 5].cpu(), tcls))
# Plot images
if plots and batch_i < 3:
f = save_dir / f'test_batch{batch_i}_labels.jpg' # labels
Thread(target=plot_images, args=(img, targets, paths, f, names), daemon=True).start()
f = save_dir / f'test_batch{batch_i}_pred.jpg' # predictions
Thread(target=plot_images, args=(img, output_to_target(out), paths, f, names), daemon=True).start()
# Compute statistics
stats = [np.concatenate(x, 0) for x in zip(*stats)] # to numpy
if len(stats) and stats[0].any():
p, r, ap, f1, ap_class = ap_per_class(*stats, plot=plots, save_dir=save_dir, names=names)
ap50, ap = ap[:, 0], ap.mean(1) # AP@0.5, AP@0.5:0.95
mp, mr, map50, map = p.mean(), r.mean(), ap50.mean(), ap.mean()
nt = np.bincount(stats[3].astype(np.int64), minlength=nc) # number of targets per class
else:
nt = torch.zeros(1)
# Print results
pf = '%20s' + '%12i' * 2 + '%12.3g' * 4 # print format
print(pf % ('all', seen, nt.sum(), mp, mr, map50, map))
# Print results per class
if (verbose or (nc < 50 and not training)) and nc > 1 and len(stats):
for i, c in enumerate(ap_class):
print(pf % (names[c], seen, nt[c], p[i], r[i], ap50[i], ap[i]))
# Print speeds
t = tuple(x / seen * 1E3 for x in (t0, t1, t0 + t1)) + (imgsz, imgsz, batch_size) # tuple
if not training:
print('Speed: %.1f/%.1f/%.1f ms inference/NMS/total per %gx%g image at batch-size %g' % t)
# Plots
if plots:
confusion_matrix.plot(save_dir=save_dir, names=list(names.values()))
if wandb_logger and wandb_logger.wandb:
val_batches = [wandb_logger.wandb.Image(str(f), caption=f.name) for f in sorted(save_dir.glob('test*.jpg'))]
wandb_logger.log({"Validation": val_batches})
if wandb_images:
wandb_logger.log({"Bounding Box Debugger/Images": wandb_images})
# Save JSON
if save_json and len(jdict):
w = Path(weights[0] if isinstance(weights, list) else weights).stem if weights is not None else '' # weights
anno_json = '../coco/annotations/instances_val2017.json' # annotations json
pred_json = str(save_dir / f"{w}_predictions.json") # predictions json
print('\nEvaluating pycocotools mAP... saving %s...' % pred_json)
with open(pred_json, 'w') as f:
json.dump(jdict, f)
try: # https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocoEvalDemo.ipynb
from pycocotools.coco import COCO
from pycocotools.cocoeval import COCOeval
anno = COCO(anno_json) # init annotations api
pred = anno.loadRes(pred_json) # init predictions api
eval = COCOeval(anno, pred, 'bbox')
if is_coco:
eval.params.imgIds = [int(Path(x).stem) for x in dataloader.dataset.img_files] # image IDs to evaluate
eval.evaluate()
eval.accumulate()
eval.summarize()
map, map50 = eval.stats[:2] # update results (mAP@0.5:0.95, mAP@0.5)
except Exception as e:
print(f'pycocotools unable to run: {e}')
# Return results
model.float() # for training
if not training:
s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
print(f"Results saved to {save_dir}{s}")
maps = np.zeros(nc) + map
for i, c in enumerate(ap_class):
maps[c] = ap[i]
return (mp, mr, map50, map, *(loss.cpu() / len(dataloader)).tolist()), maps, t
if __name__ == '__main__':
parser = argparse.ArgumentParser(prog='test.py')
parser.add_argument('--cfg', type=str, default='models/yolov5s_custom_seg.yaml', help='model.yaml path')#
parser.add_argument('--hyp', type=str, default='data/hyp.scratch.yaml', help='hyperparameters path')
#runs/train/exp52/weights/exp52_last_114_v2.0.21_20241129.pt
#runs/train/exp4/weights/best.pt
parser.add_argument('--weights', nargs='+', type=str, default="/ai/ypli/multiyolov5_point_v2/runs/train/exp52/weights_old/exp52_last_115_20250311_v2.0.25.pt", help='model.pt path(s)') #'runs/train/exp51/weights/last.pt'
parser.add_argument('--data', type=str, default='data/custom.yaml', help='*.data path')
path = ["/ai/DataSets/TopViewMultiTaskPerc_xmlin/cvat/test_fsd.txt"]
# path = ["/ai/DataSets/TopViewMultiTaskPerc_xmlin/freeSpace/annotations/ann_zh/val_cpp_v29_20250806_gt.txt"]
# path = ['/ai/DataSets/TopViewMultiTaskPerc_xmlin/freeSpace/annotations/ann_zh/val_zh_v23_20250312_gt.txt']
# path_rm = ['/ai/DataSets/TopViewMultiTaskPerc_xmlin/roadmarking/annotations/ann_zh/val_v24_fullLabel0103_gt_v1.txt']
path_rm = ["/ai/DataSets/TopViewMultiTaskPerc_xmlin/roadmarking/annotations/ann_zh/new_dataset/val_v36_20250806_gt.txt"]
# path_rm = ["/ai/DataSets/TopViewMultiTaskPerc_xmlin/roadmarking/annotations/ann_zh/new_dataset/val_v36_20250806_gt.txt"]
# path_rm = ['/ai/DataSets/TopViewMultiTaskPerc_xmlin/roadmarking/annotations/ann_zh/new_dataset/val_v30_20250305_gt.txt']
# path_rm = ['/ai/DataSets/TopViewMultiTaskPerc_xmlin/roadmarking/annotations/20240411_生态园and保定对向路沿/2task_rm_20240405_wuluhong/2task_rm_20240405_wuluhong_gt.txt']
parser.add_argument('--segdata', default=path, help='root path of segmentation data')#type=list,
parser.add_argument('--segdata_rm', default=path_rm, help='root path of segmentation data')#type=list,
parser.add_argument('--batch-size', type=int, default=8, help='size of each image batch')
parser.add_argument('--img-size', type=int, default=544, help='inference size (pixels)')
parser.add_argument('--base-size', type=int, default=544, help='long side of segtest image you want to input network')
parser.add_argument('--conf-thres', type=float, default=0.001, help='object confidence threshold')
parser.add_argument('--iou-thres', type=float, default=0.45, help='IOU threshold for NMS')
parser.add_argument('--task', default='val', help='train, val, test, speed or study')
parser.add_argument('--device', default='0', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
parser.add_argument('--single-cls', action='store_true', help='treat as single-class dataset')
parser.add_argument('--augment', action='store_true', help='augmented inference')
parser.add_argument('--verbose', action='store_true', help='report mAP by class')
parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
parser.add_argument('--save-hybrid', action='store_true', help='save label+prediction hybrid results to *.txt')
parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels')
parser.add_argument('--save-json', action='store_true', help='save a cocoapi-compatible JSON results file')
parser.add_argument('--project', default='runs/test', help='save to project/name')
parser.add_argument('--name', default='exp', help='save to project/name')
parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
opt = parser.parse_args()
opt.save_json |= opt.data.endswith('coco.yaml')
opt.data = check_file(opt.data) # check file
print(opt)
check_requirements()
# if opt.task in ('train', 'val', 'test'): # run normally
# print(1111)
# test(opt.data,
# opt.weights,
# opt.batch_size,
# opt.img_size,
# opt.conf_thres,
# opt.iou_thres,
# opt.save_json,
# opt.single_cls,
# opt.augment,
# opt.verbose,
# save_txt=opt.save_txt | opt.save_hybrid,
# save_hybrid=opt.save_hybrid,
# save_conf=opt.save_conf,
# )
# elif opt.task == 'speed': # speed benchmarks
# for w in opt.weights:
# test(opt.data, w, opt.batch_size, opt.img_size, 0.25, 0.45, save_json=False, plots=False)
# elif opt.task == 'study': # run over a range of settings and save/plot
# # python test.py --task study --data coco.yaml --iou 0.7 --weights yolov5s.pt yolov5m.pt yolov5l.pt yolov5x.pt
# x = list(range(256, 1536 + 128, 128)) # x axis (image sizes)
# for w in opt.weights:
# f = f'study_{Path(opt.data).stem}_{Path(w).stem}.txt' # filename to save to
# y = [] # y axis
# for i in x: # img-size
# print(f'\nRunning {f} point {i}...')
# r, _, t = test(opt.data, w, opt.batch_size, i, opt.conf_thres, opt.iou_thres, opt.save_json,
# plots=False)
# y.append(r + t) # results and times
# np.savetxt(f, y, fmt='%10.4g') # save
# os.system('zip -r study.zip study_*.txt')
# plot_study_txt(x=x) # plot
segtest_fsd(root=opt.segdata, weights=opt.weights, batch_size=64, n_segcls=2, base_size=opt.base_size) # 19 for cityscapes
segtest(root=opt.segdata_rm, weights=opt.weights, batch_size=64, n_segcls=14, base_size=opt.base_size) # 19 for cityscapes
更多推荐
所有评论(0)