###########################################################################

# Created by: Hang Zhang

# Email: zhang.hang@rutgers.edu

# Copyright (c) 2017

# 带标准数据加载增广的语义分割Dataset, Dataset类代码原作者张航, 详见其开发的github仓库PyTorch-Encoding, 在此基础上魔改了一些包括不均匀的长边采样,色彩变换,pad0改成了pad255(配合bdd的格式)

# 稍加修改即可加载BDD100k分割数据, 此处写了Cityscapes+BDD100k混合训练,没加单独的BDD100k

###########################################################################

import os

from torchvision.transforms.transforms import GaussianBlur

from tqdm import tqdm, trange

import random

import numpy as np

from PIL import Image, ImageOps, ImageFilter

import torch

import torch.utils.data as data

from torchvision import transforms

from utils.general import make_divisible

from scipy import stats

import math

from pathlib import Path

from functools import lru_cache

import matplotlib.pyplot as plt

from random import choices

import imgaug.augmenters as iaa

import cv2


 

@lru_cache(128)  # 目前每次调用参数都是一样的, 用cache加速, 有random的地方不能用cache

def range_and_prob(base_size, low: float = 0.5,  high: float = 3.0, std: int = 25) -> list:

    low = math.ceil((base_size * low) / 32)

    high = math.ceil((base_size * high) / 32)

    mean = math.ceil(base_size / 32) - 4  # 峰值略偏

    x = np.array(list(range(low, high + 1)))

    p = stats.norm.pdf(x, mean, std)

    p = p / p.sum()  # 概率密度 choices权重不用归一化, 归一化用于debug和可视化调参std,以及用cum_weights优化

    cum_p = np.cumsum(p)  # 概率分布,累加

    # print("!!!!!!!!!!!!!!!!!!!!!!")

    return (x, cum_p)


 

# 用均值为basesize的正态分布模拟一个类似F分布图形的采样, 目的是专注于目标scale的同时见过少量大scale(通过apollo图天空同时不掉点)

def get_long_size(base_size:int, low: float = 0.5,  high: float = 3.0, std: int = 40) -> int:  

    x, cum_p = range_and_prob(base_size, low, high, std)

    # plt.plot(x, cum_p)

    # plt.save(filename='./ppppp.png', ignore_discard=False, ignore_expires=False)

    longsize = choices(population=x, cum_weights=cum_p, k=1)[0] * 32  # 用cum_weights O(logn), 用weights O(n)

    # print(longsize)

    return longsize


 

# 基础语义分割类, 各数据集可以继承此类实现

class BaseDataset(data.Dataset):

    def __init__(self, root, split, mode=None, transform=None,

                 target_transform=None, base_size=520, crop_size=480, low=0.6, high=3.0, sample_std=25):

        self.root = root

        self.transform = transform

        self.target_transform = target_transform

        self.split = split

        self.mode = mode if mode is not None else split

        self.base_size = base_size

        self.crop_size = crop_size

        self.low = low

        self.high = high

        self.sample_std = sample_std

        self.gauss = iaa.AdditiveGaussianNoise(scale=(0, 5))

        self.aug_image = iaa.Sequential([   # 定义一个基本变换序列,顺序增强,其中的每种增强策略都可能会用到,每种策略使用的概率是不同的 # 数据增强参考:https://blog.csdn.net/lly1122334/article/details/88944589

            #iaa.CropAndPad(percent=tuple(config.train.imgaug.crop), keep_size=True, random_state=1),           # 按照像素或相对原始图像的百分比来裁剪或填充图像。如果keep_size=True,则在crop或者pad后再缩放成原来的大小。

            #iaa.Fliplr(p=config.train.imgaug.fliplr, random_state=2),

            # iaa.Affine(rotate=config.train.imgaug.rotate, shear=config.train.imgaug.shear, random_state=3),  # 仿射变换:又称仿射映射,是指在几何中,对一个向量空间进行一次线性变换并接上一个平移,变换为另一个向量空间。包含:平移(Translation)、旋转(Rotation)、缩放(Zoom)、错切(Shear)

            # iaa.CoarseDropout(config.train.imgaug.dropout, size_percent=0.05, random_state=4),               # 将图像中的矩形区域设置为零

            iaa.Multiply(mul=(0.75,1.25)),              # 将图像中所有像素与特定值相乘,从而使图像更暗或更亮

            iaa.AdditiveGaussianNoise(scale=(0, 5)),  # 高斯噪声

            iaa.LinearContrast(alpha=(0.75,1.25))      # 线性对比度

            #iaa.Resize({"height": config.model.input_height, "width": config.model.input_width})  # 将图片缩放到固定大小

        ], random_state=10)

        self.aug_label = iaa.Sequential([

            #iaa.CropAndPad(percent=tuple(config.train.imgaug.crop), keep_size=True, random_state=1),

            #iaa.Fliplr(p=config.train.imgaug.fliplr, random_state=2),

            # iaa.Affine(rotate=config.train.imgaug.rotate, shear=config.train.imgaug.shear, random_state=3),

            # iaa.CoarseDropout(config.train.imgaug.dropout, size_percent=0.05, random_state=4),

            #iaa.Resize({"height": config.model.input_height, "width": config.model.input_width}, interpolation="nearest")

        ], random_state=10)

        if self.mode == 'train':

            print('BaseDataset: base_size {}, crop_size {}'. \

                format(base_size, crop_size))

            print(f"Random scale low: {self.low}, high: {self.high}, sample_std: {self.sample_std}")

    def __getitem__(self, index):

        raise NotImplementedError

    @property

    def num_class(self):

        return self.NUM_CLASS

    @property

    def pred_offset(self):

        raise NotImplementedError

    def make_pred(self, x):

        return x + self.pred_offset

    def _testval_img_transform(self, img):  # 新的训练后测验证集数据处理(仅支持同尺寸图): 图长边resize到base_size, 但标签是原图, 若非原图需要测试时手动把输出放大到原图 (原版仅处理标签, 原图输入)

        w, h = img.size

        outlong = self.base_size

        outlong = make_divisible(outlong, 32)  # 32是网络最大下采样倍数, 测试时自动使边为32倍数

        if w > h:

            ow = outlong

            oh = int(1.0 * h * ow / w)

            oh = make_divisible(oh, 32)

        else:

            oh = outlong

            ow = int(1.0 * w * oh / h)

            ow = make_divisible(ow, 32)

        #oh = 512 # 高度暂时写死

        img = img.resize((ow, oh), Image.BILINEAR)

        return img

    def _val_sync_transform(self, img, mask):  # 训练中验证数据处理(支持不同尺寸图,但是指标通常比testval略低一点点): 把图短边resize成crop_size, 长边保持比例, 再crop一块(crop_size,crop_size)用于验证(在citysbdd和custom中图不同时候使用)

        w_outsize,h_outsize = self.crop_size

        w_crop_size, h_crop_size = self.crop_size

        w, h = img.size

        if 1: #表示开启对大图像进行裁剪,裁剪到1088

            w, h = img.size

            if w > 961 and h > 1089:

               leftpointx = round((w - 960)/2)  

               leftpointy = round((h - 1088)/2)

               rightpointx = leftpointx + 960

               rightpointy = leftpointy + 1088

               img = img.crop((leftpointx,leftpointy,rightpointx,rightpointy))

               mask = mask.crop((leftpointx,leftpointy,rightpointx,rightpointy))

        # if 1: #表示开启对小分辨率图像进行补边

        #     if w < 1440 and h < 1632:

        #         pad_w = 1440 - w

        #         pad_h = 1632 - h

        #         img = ImageOps.expand(img, border=(0, 0, pad_w, pad_h), fill=0)

        #         mask = ImageOps.expand(mask, border=(0, 0, pad_w, pad_h), fill=127)

        #         w = 1440

        #         h = 1632

        # if 1: #测试不同分辨率精度

        #     w, h = img.size

        #     if w > 961 and h > 1089:

        #        leftpointx = round((w - 1216)/2)  

        #        leftpointy = round((h - 1152)/2)

        #        rightpointx = leftpointx + 1216

        #        rightpointy = leftpointy + 1152

        #        img = img.crop((leftpointx,leftpointy,rightpointx,rightpointy))

        #        mask = mask.crop((leftpointx,leftpointy,rightpointx,rightpointy))

        w, h = img.size

        if w > h:

            oh = h_crop_size

            ow = int(1.0 * w * oh / h)

        else:

            ow = w_crop_size

            oh = int(1.0 * h * ow / w)

        img = img.resize((ow, oh), Image.BILINEAR)

        mask = mask.resize((ow, oh), Image.NEAREST)

        # center crop

        w, h = img.size

        x1 = int(round((w - w_outsize) / 2.))

        y1 = int(round((h - h_outsize) / 2.))

        img = img.crop((x1, y1, x1+w_outsize, y1+h_outsize))

        mask = mask.crop((x1, y1, x1+w_outsize, y1+h_outsize))

        # final transform

        # return img, self._mask_transform(mask)

        return img, mask  # 这里改了, 在__getitem__里再调用self._mask_transform(mask)

    def _sync_transform(self, img, mask):  # 训练数据增广

        # random mirror

        # if 1: #表示开启对小分辨率图像进行补边,目的是为了

        #     w, h = img.size

        #     if w < 1440 and h < 1632:

        #         pad_w = int((1440 - w) * random.random())

        #         pad_h = int((1632 - h) * random.random())

        #         img = ImageOps.expand(img, border=(0, 0, pad_w, pad_h), fill=0)

        #         mask = ImageOps.expand(mask, border=(0, 0, pad_w, pad_h), fill=127)

        if 1: #表示开启对大图像进行裁剪,裁剪到1088

            w, h = img.size

            if w > 961 and h > 1089:

               leftpointx = round((w - 960)/2)  

               leftpointy = round((h - 1088)//2)

               rightpointx = leftpointx + 960

               rightpointy = leftpointy + 1088

               img = img.crop((leftpointx,leftpointy,rightpointx,rightpointy))

               mask = mask.crop((leftpointx,leftpointy,rightpointx,rightpointy))

               

        w, h = img.size

        if random.random() < 0.5:

            img = img.transpose(Image.FLIP_LEFT_RIGHT)

            mask = mask.transpose(Image.FLIP_LEFT_RIGHT)

        if random.random() < 0.5:

            img = img.transpose(Image.FLIP_TOP_BOTTOM)

            mask = mask.transpose(Image.FLIP_TOP_BOTTOM)

        img = np.array(img)

        mask = np.array(mask)

        if random.random() < 0.5:

            angle = -15 + (15 - (-15)) * random.random()

            h, w, _ = img.shape

            matrix = cv2.getRotationMatrix2D((w / 2, h / 2), angle, 1)

            img = cv2.warpAffine(img, matrix, (w, h), flags=cv2.INTER_LINEAR, borderMode=cv2.BORDER_CONSTANT, borderValue=0)

            mask = cv2.warpAffine(mask, matrix, (w, h), flags=cv2.INTER_NEAREST, borderMode=cv2.BORDER_CONSTANT, borderValue=127)

        if random.random() < 0.5:

            img = cv2.GaussianBlur(img, (5, 5), 0)

        # else:

        #     if random.random() < 0.3:

        #         img = cv2.blur(img, (5, 5))    

        img = Image.fromarray(img)

        mask = Image.fromarray(mask)

        w_crop_size, h_crop_size = self.crop_size

        # random scale (short edge)  从base_size一半到两倍间随机取数, 图resize长边为此数, 短边保持比例

        w, h = img.size

        long_size = get_long_size(base_size=self.base_size, low=self.low, high=self.high, std=self.sample_std)  # random.randint(int(self.base_size*0.5), int(self.base_size*2))

        if h > w:

            oh = long_size

            ow = int(1.0 * w * long_size / h + 0.5)

            short_size = ow

        else:

            ow = long_size

            oh = int(1.0 * h * long_size / w + 0.5)

            short_size = oh

        img = img.resize((ow, oh), Image.BILINEAR)

        mask = mask.resize((ow, oh), Image.NEAREST)

        # pad crop  边长比crop_size小就pad

        if ow < w_crop_size or oh < h_crop_size:  # crop_size:

            padh = h_crop_size - oh if oh < h_crop_size else 0

            padw = w_crop_size - ow if ow < w_crop_size else 0

            img = ImageOps.expand(img, border=(0, 0, padw, padh), fill=0)

            mask = ImageOps.expand(mask, border=(0, 0, padw, padh), fill=127)  # mask不填充0而是填255:类别0不是训练类别,后续会被填-1(但bdd100k数据格式是trainid,为了兼容填255)

        # random crop 随机按crop_size从resize和pad的图上crop一块用于训练

        w, h = img.size

        x1 = random.randint(0, w - w_crop_size)

        y1 = random.randint(0, h - h_crop_size)

        img = img.crop((x1, y1, x1+w_crop_size, y1+h_crop_size))

        mask = mask.crop((x1, y1, x1+w_crop_size, y1+h_crop_size))

        # img = self.gauss(img)

        # img = self.aug_image(image=img)

        # mask = self.aug_label(image=mask)

        # final transform

        # return img, self._mask_transform(mask)

        return img, mask  # 这里改了, 在__getitem__里再调用self._mask_transform(mask)

    def _mask_transform(self, mask):

        return torch.from_numpy(np.array(mask)).long()


 

class CitySegmentation(BaseDataset):  # base_size 2048 crop_size 768

    NUM_CLASS = 19

    # mode训练时候验证用val, 测试验证集指标时候用testval一般会更高且更接近真实水平

    def __init__(self, root=os.path.expanduser('../data/citys/'), split='train',

                 mode=None, transform=None, target_transform=None, **kwargs):

        super(CitySegmentation, self).__init__(

            root, split, mode, transform, target_transform, **kwargs)

        # self.root = os.path.join(root, self.BASE_DIR)

        self.images, self.mask_paths = get_city_pairs(self.root, self.split)

        assert (len(self.images) == len(self.mask_paths))

        if len(self.images) == 0:

            raise RuntimeError("Found 0 images in subfolders of: \

                " + self.root + "\n")

        self._indices = np.array(range(-1, 19))

        self._classes = np.array([0, 7, 8, 11, 12, 13, 17, 19, 20, 21, 22,  # 这个不用管,用于测试集提交转标签的

                                  23, 24, 25, 26, 27, 28, 31, 32, 33])

        self._key = np.array([-1, -1, -1, -1, -1, -1,

                              -1, -1,  0,  1, -1, -1,   # Cityscapes标注是id(Bdd100k标注是trian_id不需要转换,仅需把255换成-1忽略)

                              2,   3,  4, -1, -1, -1,   # 35类, 训练类共19类, -1不是训练类

                              5,  -1,  6,  7,  8,  9,

                              10, 11, 12, 13, 14, 15,

                              -1, -1, 16, 17, 18])

        self._mapping = np.array(range(-1, len(self._key)-1)).astype('int32')

    def _class_to_index(self, mask):

        # assert the values

        mask[mask==255] = 0  # pad的255填充成0(id), 下面转trainid变成-1

        values = np.unique(mask)

        for i in range(len(values)):

            assert(values[i] in self._mapping)

        index = np.digitize(mask.ravel(), self._mapping, right=True)

        return self._key[index].reshape(mask.shape)

    def __getitem__(self, index):

        img = Image.open(self.images[index]).convert('RGB')

        if self.mode == 'test':

            if self.transform is not None:

                img = self.transform(img)

            return img, os.path.basename(self.images[index])

        # mask = self.masks[index]

        mask = Image.open(self.mask_paths[index])

        # synchrosized transform

        if self.mode == 'train':

            img, mask = self._sync_transform(img, mask)  # 训练数据增广

            mask = self._mask_transform(mask)

        elif self.mode == 'val':

            img, mask = self._val_sync_transform(img, mask)  # 验证数据处理

            mask = self._mask_transform(mask)

        else:

            assert self.mode == 'testval'   # 训练时候验证用val(快, 省显存),测试验证集指标时用testval一般mIoU会更高且更接近真实水平

            # mask = self._mask_transform(mask)  # 测试验证指标, 除转换标签格式外不做任何处理

            img = self._testval_img_transform(img)

            mask = self._mask_transform(mask)

        # general resize, normalize and toTensor

        if self.transform is not None:

            img = self.transform(img)

        if self.target_transform is not None:

            mask = self.target_transform(mask)

        return img, mask

    def _mask_transform(self, mask):

        # target = np.array(mask).astype('int32') - 1

        target = self._class_to_index(np.array(mask).astype('int32'))

        return torch.from_numpy(target).long()

    def __len__(self):

        return len(self.images)

    def make_pred(self, mask):

        values = np.unique(mask)

        for i in range(len(values)):

            assert(values[i] in self._indices)

        index = np.digitize(mask.ravel(), self._indices, right=True)

        return self._classes[index].reshape(mask.shape)


 

# 混合Cityscapes与BDD100k用这个, 把bdd当做Cityscapes的一个城市, 用jpg和png区分处理, 没写单独BDD的

class CityBddSegmentation(BaseDataset):  # base_size 2048 crop_size 768

    # mode训练时候验证用testval, 测试验证集指标时候也用testval, val倍废弃

    def __init__(self, root=os.path.expanduser('../data/citys/'), split='train',

                 mode=None, transform=None, target_transform=None, NUM_CLASS=19, **kwargs):

        super(CityBddSegmentation, self).__init__(

            root, split, mode, transform, target_transform, **kwargs)

        # self.root = os.path.join(root, self.BASE_DIR)

        self.images, self.mask_paths = get_city_pairs(self.root, self.split)

        assert (len(self.images) == len(self.mask_paths))

        if len(self.images) == 0:

            raise RuntimeError("Found 0 images in subfolders of: \

                " + self.root + "\n")

        self.NUM_CLASS = NUM_CLASS

        self._indices = np.array(range(-1, 19))

        self._classes = np.array([0, 7, 8, 11, 12, 13, 17, 19, 20, 21, 22,  # 这个不用管,用于测试集提交转标签的

                                  23, 24, 25, 26, 27, 28, 31, 32, 33])

        self._key = np.array([-1, -1, -1, -1, -1, -1,

                              -1, -1,  0,  1, -1, -1,   # Cityscapes标注是id(Bdd100k标注是trian_id不需要转换,仅需把255换成-1忽略)

                              2,   3,  4, -1, -1, -1,   # 35类, 训练类共19类, -1不是训练类

                              5,  -1,  6,  7,  8,  9,

                              10, 11, 12, 13, 14, 15,

                              -1, -1, 16, 17, 18])

        self._mapping = np.array(range(-1, len(self._key)-1)).astype('int32')

    def _class_to_index(self, mask):

        # assert the values

        mask[mask==255] = 0  # pad的255填充转成0(id), 下面转trainid变成-1

        values = np.unique(mask)

        for i in range(len(values)):

            assert(values[i] in self._mapping)

        index = np.digitize(mask.ravel(), self._mapping, right=True)

        return self._key[index].reshape(mask.shape)

    def __getitem__(self, index):

        imagepath = self.images[index]

        img = Image.open(imagepath).convert('RGB')

        if self.mode == 'test':

            if self.transform is not None:

                img = self.transform(img)

            return img, os.path.basename(self.images[index])

        # mask = self.masks[index]

        mask = Image.open(self.mask_paths[index])

        # synchrosized transform

        if self.mode == 'train':

            img, mask = self._sync_transform(img, mask)  # 训练数据增广

            if imagepath.endswith('png'):  # Cityscapes png id转trian_id

                mask = self._mask_transform(mask)

            else:  # BDD100k jpg 只用把pad和原本忽略类的255替换成-1

                mask = torch.from_numpy(np.array(mask)).long()

                mask[mask==255] = -1

        elif self.mode == 'val':

            img, mask = self._val_sync_transform(img, mask)  # 验证数据处理

            if imagepath.endswith('png'):  # Cityscapes png id转trian_id

                mask = self._mask_transform(mask)

            else:  # BDD100k jpg 只用把pad和原本忽略类的255替换成-1

                mask = torch.from_numpy(np.array(mask)).long()

                mask[mask==255] = -1

        else:

            assert self.mode == 'testval'   # 训练时候验证用val(快, 省显存),测试验证集指标时用testval一般mIoU会更高且更接近真实水平

            # mask = self._mask_transform(mask)  # 测试验证指标, 除转换标签格式外不做任何处理

            img = self._testval_img_transform(img)

            if imagepath.endswith('png'):  # Cityscapes png

                mask = self._mask_transform(mask)

            else:  # BDD100k jpg

                mask = torch.from_numpy(np.array(mask)).long()

                mask[mask==255] = -1

        # general resize, normalize and toTensor

        if self.transform is not None:

            img = self.transform(img)

        if self.target_transform is not None:

            mask = self.target_transform(mask)

        return img, mask

    def _mask_transform(self, mask):

        # target = np.array(mask).astype('int32') - 1

        target = self._class_to_index(np.array(mask).astype('int32'))

        return torch.from_numpy(target).long()

    def __len__(self):

        return len(self.images)

    def make_pred(self, mask):

        values = np.unique(mask)

        for i in range(len(values)):

            assert(values[i] in self._indices)

        index = np.digitize(mask.ravel(), self._indices, right=True)

        return self._classes[index].reshape(mask.shape)


 

class CustomSegmentation(BaseDataset):  # base_size 2048 crop_size 768

    # mode训练时候验证用testval, 测试验证集指标时候也用testval, val倍废弃

    def __init__(self, root=os.path.expanduser('../data/citys/'), split='train',

                 mode=None, transform=None, target_transform=None, **kwargs):

        super(CustomSegmentation, self).__init__(

            root, split, mode, transform, target_transform, **kwargs)

        # self.root = os.path.join(root, self.BASE_DIR)

        self.images, self.mask_paths = get_custom_pairs(self.root, self.split)

        assert (len(self.images) == len(self.mask_paths))

        if len(self.images) == 0:

            raise RuntimeError("Found 0 images in subfolders of: \

                " + self.root + "\n")

    def __getitem__(self, index):

        imagepath = self.images[index]

        img = Image.open(imagepath).convert('RGB')

        if self.mode == 'test':

            if self.transform is not None:

                img = self.transform(img)

            return img, os.path.basename(self.images[index])

        # mask = self.masks[index]

        mask = Image.open(self.mask_paths[index])

        # minv = min(mask.numpy())

        # maxv = max(mask.numpy())

        # mask.save('./3channelmask.png')

        channels = mask.getbands()

        if 'R' in channels:

            mask = mask.split()[0]

        #mask.save('./red.png')

        # synchrosized transform

        if self.mode == 'train':

            img, mask = self._sync_transform(img, mask)  # 训练数据增广

            #mask = np.array(mask)

            #Image.fromarray(mask.astype(np.uint8)).save('./mask.png')

            mask = torch.from_numpy(np.array(mask)).long()

            # minmask = np.min(mask)

            # maxmask = np.max(mask)

            # mask[mask == 128] = 1

            # mask[mask == 255] = -1

            # mask[mask == 32] = 2#方柱 # 32

            # mask[mask == 64] = 2#圆柱 # 64

            mask[mask == 127] = -1

            mask[mask==255] = -1

            # mask = mask.numpy()

            # Image.fromarray(mask.astype(np.uint8)).save('./mask.png')

        elif self.mode == 'val':

            img, mask = self._val_sync_transform(img, mask)  # 验证数据处理

            mask = torch.from_numpy(np.array(mask)).long()

            # mask = mask[:,:,-1]

            # mask[mask == 128] = 1

            # mask[mask == 255] = -1

            # mask[mask == 32] = 2#方柱 # 32

            # mask[mask == 64] = 2#圆柱 # 64

            mask[mask == 127] = -1

            mask[mask==255] = -1

        else:

            assert self.mode == 'testval'   # 训练时候验证用val(快, 省显存),测试验证集指标时用testval一般mIoU会更高且更接近真实水平

            # mask = self._mask_transform(mask)  # 测试验证指标, 除转换标签格式外不做任何处理

            img = self._testval_img_transform(img)

            mask = torch.from_numpy(np.array(mask)).long()

            # mask = mask[:,:,-1]

            # mask[mask == 128] = 1

            # mask[mask == 255] = -1

            # mask[mask == 32] = 2#方柱 # 32

            # mask[mask == 64] = 2#圆柱 # 64

            mask[mask == 127] = -1

            mask[mask==255] = -1

        # general resize, normalize and toTensor

        if self.transform is not None:

            img = self.transform(img)

        if self.target_transform is not None:

            mask = self.target_transform(mask)

        return img, mask

    def __len__(self):

        return len(self.images)

class CustomSegmentation_sifting(BaseDataset):  # base_size 2048 crop_size 768

    # mode训练时候验证用testval, 测试验证集指标时候也用testval, val倍废弃

    def __init__(self, root=os.path.expanduser('../data/citys/'), split='train',

                 mode=None, transform=None, target_transform=None, **kwargs):

        super(CustomSegmentation_sifting, self).__init__(

            root, split, mode, transform, target_transform, **kwargs)

        # self.root = os.path.join(root, self.BASE_DIR)

        self.images, self.mask_paths = get_custom_pairs(self.root, self.split)

        assert (len(self.images) == len(self.mask_paths))

        if len(self.images) == 0:

            raise RuntimeError("Found 0 images in subfolders of: \

                " + self.root + "\n")

    def __getitem__(self, index):

        imagepath = self.images[index]

        img = Image.open(imagepath).convert('RGB')

        if self.mode == 'test':

            if self.transform is not None:

                img = self.transform(img)

            return img, os.path.basename(self.images[index])

        # mask = self.masks[index]

        mask = Image.open(self.mask_paths[index])

        # minv = min(mask.numpy())

        # maxv = max(mask.numpy())

        # mask.save('./3channelmask.png')

        channels = mask.getbands()

        if 'R' in channels:

            mask = mask.split()[0]

        #mask.save('./red.png')

        # synchrosized transform

        if self.mode == 'train':

            img, mask = self._sync_transform(img, mask)  # 训练数据增广

            #mask = np.array(mask)

            #Image.fromarray(mask.astype(np.uint8)).save('./mask.png')

            mask = torch.from_numpy(np.array(mask)).long()

            # minmask = np.min(mask)

            # maxmask = np.max(mask)

            # mask[mask == 128] = 1

            # mask[mask == 255] = -1

            # mask[mask == 32] = 2#方柱 # 32

            # mask[mask == 64] = 2#圆柱 # 64

            mask[mask == 127] = -1

            mask[mask==255] = -1

            # mask = mask.numpy()

            # Image.fromarray(mask.astype(np.uint8)).save('./mask.png')

        elif self.mode == 'val':

            img, mask = self._val_sync_transform(img, mask)  # 验证数据处理

            mask = torch.from_numpy(np.array(mask)).long()

            # mask = mask[:,:,-1]

            # mask[mask == 128] = 1

            # mask[mask == 255] = -1

            # mask[mask == 32] = 2#方柱 # 32

            # mask[mask == 64] = 2#圆柱 # 64

            mask[mask == 127] = -1

            mask[mask==255] = -1

        else:

            assert self.mode == 'testval'   # 训练时候验证用val(快, 省显存),测试验证集指标时用testval一般mIoU会更高且更接近真实水平

            # mask = self._mask_transform(mask)  # 测试验证指标, 除转换标签格式外不做任何处理

            img = self._testval_img_transform(img)

            mask = torch.from_numpy(np.array(mask)).long()

            # mask = mask[:,:,-1]

            # mask[mask == 128] = 1

            # mask[mask == 255] = -1

            # mask[mask == 32] = 2#方柱 # 32

            # mask[mask == 64] = 2#圆柱 # 64

            mask[mask == 127] = -1

            mask[mask==255] = -1

        # general resize, normalize and toTensor

        if self.transform is not None:

            img = self.transform(img)

        if self.target_transform is not None:

            mask = self.target_transform(mask)

        return img, mask,imagepath,self.mask_paths[index]

    def __len__(self):

        return len(self.images)

class RMSegmentation(BaseDataset):  # base_size 2048 crop_size 768

    # mode训练时候验证用testval, 测试验证集指标时候也用testval, val倍废弃

    def __init__(self, root=os.path.expanduser('../data/citys/'), split='train',

                 mode=None, transform=None, target_transform=None, **kwargs):

        super(RMSegmentation, self).__init__(

            root, split, mode, transform, target_transform, **kwargs)

        # self.root = os.path.join(root, self.BASE_DIR)

        self.images, self.mask_paths = get_custom_pairs(self.root, self.split)

        assert (len(self.images) == len(self.mask_paths))

        if len(self.images) == 0:

            raise RuntimeError("Found 0 images in subfolders of: \

                " + self.root + "\n")

    def __getitem__(self, index):

        imagepath = self.images[index]

        img = Image.open(imagepath).convert('RGB')

        if self.mode == 'test':

            if self.transform is not None:

                img = self.transform(img)

            return img, os.path.basename(self.images[index])

        # mask = self.masks[index]

        mask = Image.open(self.mask_paths[index])

        # minv = min(mask.numpy())

        # maxv = max(mask.numpy())

        # mask.save('./3channelmask.png')

        channels = mask.getbands()

        if 'R' in channels:

            mask = mask.split()[0]

        #mask.save('./red.png')

        # synchrosized transform

        if self.mode == 'train':

            img, mask = self._sync_transform(img, mask)  # 训练数据增广

            #mask = np.array(mask)

            #Image.fromarray(mask.astype(np.uint8)).save('./mask.png')

            mask = torch.from_numpy(np.array(mask)).long()

            # minmask = np.min(mask)

            # maxmask = np.max(mask)

            # mask[mask == 128] = 1

            # mask[mask == 255] = -1

            # mask[mask == 32] = 2#方柱 # 32

            # mask[mask == 64] = 2#圆柱 # 64

            mask[mask == 127] = -1

            mask[mask == 14] = 0

            mask[mask == 15] = 0

            mask[mask==255] = 7

            # mask = mask.numpy()

            # Image.fromarray(mask.astype(np.uint8)).save('./mask.png')

        elif self.mode == 'val':

            img, mask = self._val_sync_transform(img, mask)  # 验证数据处理

            mask = torch.from_numpy(np.array(mask)).long()

            # mask = mask[:,:,-1]

            # mask[mask == 128] = 1

            # mask[mask == 255] = -1

            # mask[mask == 32] = 2#方柱 # 32

            # mask[mask == 64] = 2#圆柱 # 64

            mask[mask == 127] = -1

            mask[mask == 14] = 0

            mask[mask == 15] = 0

            mask[mask == 255] = 7

        else:

            assert self.mode == 'testval'   # 训练时候验证用val(快, 省显存),测试验证集指标时用testval一般mIoU会更高且更接近真实水平

            # mask = self._mask_transform(mask)  # 测试验证指标, 除转换标签格式外不做任何处理

            img = self._testval_img_transform(img)

            mask = torch.from_numpy(np.array(mask)).long()

            # mask = mask[:,:,-1]

            # mask[mask == 128] = 1

            # mask[mask == 255] = -1

            # mask[mask == 32] = 2#方柱 # 32

            # mask[mask == 64] = 2#圆柱 # 64

            mask[mask == 127] = -1

            mask[mask == 14] = 0

            mask[mask == 15] = 0

            mask[mask == 255] = 7

           

        # if self.mode == 'train':

        #     img, mask = self._sync_transform(img, mask)  # 训练数据增广

        #     #mask = np.array(mask)

        #     #Image.fromarray(mask.astype(np.uint8)).save('./mask.png')

        #     mask = torch.from_numpy(np.array(mask)).long()

        #     # minmask = np.min(mask)

        #     # maxmask = np.max(mask)

        #     # mask[mask == 128] = 1

        #     # mask[mask == 255] = -1

        #     # mask[mask == 32] = 2#方柱 # 32

        #     # mask[mask == 64] = 2#圆柱 # 64

        #     mask[mask == 127] = -1

        #     mask[mask == 14] = 0

        #     mask[mask == 15] = 0

        #     mask[mask==255] = 7

        #     mask[mask==3] = 0

        #     mask[mask==4] = 0

        #     mask[mask==5] = 0

        #     mask[mask==7] = 0

        #     mask[mask==8] = 0

        #     mask[mask==11] = 0

        #     mask[mask==12] = 0

        #     mask[mask==6] = 3

        #     mask[mask==9] = 4

        #     mask[mask==10] = 5

        #     mask[mask==13] = 6

        #     # mask = mask.numpy()

        #     # Image.fromarray(mask.astype(np.uint8)).save('./mask.png')

        # elif self.mode == 'val':

        #     img, mask = self._val_sync_transform(img, mask)  # 验证数据处理

        #     mask = torch.from_numpy(np.array(mask)).long()

        #     # mask = mask[:,:,-1]

        #     # mask[mask == 128] = 1

        #     # mask[mask == 255] = -1

        #     # mask[mask == 32] = 2#方柱 # 32

        #     # mask[mask == 64] = 2#圆柱 # 64

        #     mask[mask == 127] = -1

        #     mask[mask == 14] = 0

        #     mask[mask == 15] = 0

        #     mask[mask==255] = 7

        #     mask[mask==3] = 0

        #     mask[mask==4] = 0

        #     mask[mask==5] = 0

        #     mask[mask==7] = 0

        #     mask[mask==8] = 0

        #     mask[mask==11] = 0

        #     mask[mask==12] = 0

        #     mask[mask==6] = 3

        #     mask[mask==9] = 4

        #     mask[mask==10] = 5

        #     mask[mask==13] = 6

        # else:

        #     assert self.mode == 'testval'   # 训练时候验证用val(快, 省显存),测试验证集指标时用testval一般mIoU会更高且更接近真实水平

        #     # mask = self._mask_transform(mask)  # 测试验证指标, 除转换标签格式外不做任何处理

        #     img = self._testval_img_transform(img)

        #     mask = torch.from_numpy(np.array(mask)).long()

        #     # mask = mask[:,:,-1]

        #     # mask[mask == 128] = 1

        #     # mask[mask == 255] = -1

        #     # mask[mask == 32] = 2#方柱 # 32

        #     # mask[mask == 64] = 2#圆柱 # 64

        #     mask[mask == 127] = -1

        #     mask[mask == 14] = 0

        #     mask[mask == 15] = 0

        #     mask[mask == 255] = 7

        # general resize, normalize and toTensor

        if self.transform is not None:

            img = self.transform(img)

        if self.target_transform is not None:

            mask = self.target_transform(mask)

        return img, mask

    def __len__(self):

        return len(self.images)

class RMSegmentation_sifting(BaseDataset):  # base_size 2048 crop_size 768

    # mode训练时候验证用testval, 测试验证集指标时候也用testval, val倍废弃

    def __init__(self, root=os.path.expanduser('../data/citys/'), split='train',

                 mode=None, transform=None, target_transform=None, **kwargs):

        super(RMSegmentation_sifting, self).__init__(

            root, split, mode, transform, target_transform, **kwargs)

        # self.root = os.path.join(root, self.BASE_DIR)

        self.images, self.mask_paths = get_custom_pairs(self.root, self.split)

        assert (len(self.images) == len(self.mask_paths))

        if len(self.images) == 0:

            raise RuntimeError("Found 0 images in subfolders of: \

                " + self.root + "\n")

    def __getitem__(self, index):

        imagepath = self.images[index]

        img = Image.open(imagepath).convert('RGB')

        if self.mode == 'test':

            if self.transform is not None:

                img = self.transform(img)

            return img, os.path.basename(self.images[index])

        # mask = self.masks[index]

        mask = Image.open(self.mask_paths[index])

        # minv = min(mask.numpy())

        # maxv = max(mask.numpy())

        # mask.save('./3channelmask.png')

        channels = mask.getbands()

        if 'R' in channels:

            mask = mask.split()[0]

        #mask.save('./red.png')

        # synchrosized transform

        if self.mode == 'train':

            img, mask = self._sync_transform(img, mask)  # 训练数据增广

            #mask = np.array(mask)

            #Image.fromarray(mask.astype(np.uint8)).save('./mask.png')

            mask = torch.from_numpy(np.array(mask)).long()

            # minmask = np.min(mask)

            # maxmask = np.max(mask)

            # mask[mask == 128] = 1

            # mask[mask == 255] = -1

            # mask[mask == 32] = 2#方柱 # 32

            # mask[mask == 64] = 2#圆柱 # 64

            mask[mask == 127] = -1

            mask[mask == 14] = 0

            mask[mask == 15] = 0

            mask[mask==255] = 7

            # mask = mask.numpy()

            # Image.fromarray(mask.astype(np.uint8)).save('./mask.png')

        elif self.mode == 'val':

            img, mask = self._val_sync_transform(img, mask)  # 验证数据处理

            mask = torch.from_numpy(np.array(mask)).long()

            # mask = mask[:,:,-1]

            # mask[mask == 128] = 1

            # mask[mask == 255] = -1

            # mask[mask == 32] = 2#方柱 # 32

            # mask[mask == 64] = 2#圆柱 # 64

            mask[mask == 127] = -1

            mask[mask == 14] = 0

            mask[mask == 15] = 0

            mask[mask == 255] = 7

        else:

            assert self.mode == 'testval'   # 训练时候验证用val(快, 省显存),测试验证集指标时用testval一般mIoU会更高且更接近真实水平

            # mask = self._mask_transform(mask)  # 测试验证指标, 除转换标签格式外不做任何处理

            img = self._testval_img_transform(img)

            mask = torch.from_numpy(np.array(mask)).long()

            # mask = mask[:,:,-1]

            # mask[mask == 128] = 1

            # mask[mask == 255] = -1

            # mask[mask == 32] = 2#方柱 # 32

            # mask[mask == 64] = 2#圆柱 # 64

            mask[mask == 127] = -1

            mask[mask == 14] = 0

            mask[mask == 15] = 0

            mask[mask == 255] = 7

           

        # general resize, normalize and toTensor

        if self.transform is not None:

            img = self.transform(img)

        if self.target_transform is not None:

            mask = self.target_transform(mask)

        return img, mask,imagepath,self.mask_paths[index]

    def __len__(self):

        return len(self.images)

# 单独Cityscapes和混合Cityscapes与BDD100k都用这个, 把bdd当做Cityscapes的一个城市, 用jpg和png区分处理

def get_city_pairs(folder, split='train'):

    def get_path_pairs(img_folder, mask_folder):

        img_paths = []

        mask_paths = []

        for root, directories, files in os.walk(img_folder):

            for filename in files:

                if filename.endswith(".png") or filename.endswith(".jpg"):

                    imgpath = os.path.join(root, filename)

                    foldername = os.path.basename(os.path.dirname(imgpath))

                    maskname = filename.replace('leftImg8bit', 'gtFine_labelIds')

                    if filename.endswith(".jpg"):  # BDD100k图是jpg,标签是png

                        maskname =maskname.replace('.jpg', '.png')

                    maskpath = os.path.join(mask_folder, foldername, maskname)

                    if os.path.isfile(imgpath) and os.path.isfile(maskpath):

                        img_paths.append(imgpath)

                        mask_paths.append(maskpath)

                    else:  # 正常情况Cityscapes和BDD数据文件层面很干净不应该警告

                        print('cannot find the mask or image:', imgpath, maskpath)

        print('Found {} images in the folder {}'.format(len(img_paths), img_folder))

        return img_paths, mask_paths

    if split == 'train' or split == 'val' or split == 'test':

        img_folder = os.path.join(folder, 'leftImg8bit/' + split)

        mask_folder = os.path.join(folder, 'gtFine/'+ split)

        img_paths, mask_paths = get_path_pairs(img_folder, mask_folder)

        return img_paths, mask_paths

    else:

        assert split == 'trainval'

        print('trainval set')

        train_img_folder = os.path.join(folder, 'leftImg8bit/train')

        train_mask_folder = os.path.join(folder, 'gtFine/train')

        val_img_folder = os.path.join(folder, 'leftImg8bit/val')

        val_mask_folder = os.path.join(folder, 'gtFine/val')

        train_img_paths, train_mask_paths = get_path_pairs(train_img_folder, train_mask_folder)

        val_img_paths, val_mask_paths = get_path_pairs(val_img_folder, val_mask_folder)

        img_paths = train_img_paths + val_img_paths

        mask_paths = train_mask_paths + val_mask_paths

    return img_paths, mask_paths


 

def get_custom_pairs(folder, split='train'):

    def get_path_pairs(img_folder, mask_folder):

        img_paths = []

        mask_paths = []

        for root, directories, files in os.walk(img_folder):

            for filename in files:

                # print(111111111111111111)

                # print(filename)

                # exit()

                if filename.endswith(".png") or filename.endswith(".jpg"):

                    imgpath = os.path.join(root, filename)

                    # foldername = os.path.basename(os.path.dirname(imgpath)) #customdata不用像cityscapes一样包装一个城市名字了

                    maskname = filename.replace('segimages', 'seglabels')

                    if filename.endswith(".jpg"):  # 图可以是jpg,但是标签必须是png

                        maskname =maskname.replace('.jpg', '.png')

                    # maskpath = os.path.join(mask_folder, foldername, maskname)

                    maskpath = os.path.join(mask_folder, maskname)

                    if os.path.isfile(imgpath) and os.path.isfile(maskpath):

                        img_paths.append(imgpath)

                        mask_paths.append(maskpath)

                    else:  # 正常情况Cityscapes和BDD数据文件层面很干净不应该警告

                        print('cannot find the mask or image:', imgpath, maskpath)

        print('Found {} images in the folder {}'.format(len(img_paths), img_folder))

        return img_paths, mask_paths

    if split == 'train' or split == 'val' or split == 'test':

        root = ''

        img_paths=[]

        mask_paths=[]

        for flod in folder:

            p = Path(flod)

            if p.is_dir():

                img_folder = os.path.join(folder, 'segimages/' + split)

                mask_folder = os.path.join(folder, 'seglabels/'+ split)

                img_paths, mask_paths = get_path_pairs(img_folder, mask_folder)

            elif p.is_file():

                with open(p, 'r') as t:

                    t = t.read().strip().splitlines()

                    for i in t:

                        line_split = i.split('   ')

                        maskpath = root + line_split[1]

                        maskpath = maskpath.replace("/datasets/","/DataSets/")

                        # mask_paths.append(maskpath)

                        # imagepath = maskpath.replace('mask','image')[0:-4] + '.jpg'

                        imagepath = line_split[0].replace("/datasets/","/DataSets/")

                        if os.path.exists(imagepath) and os.path.exists(maskpath):

                            # img = Image.open(imagepath).convert('RGB')

                            # if img.size[0]==1440 and img.size[1]==1632:

                            # if os.path.exists(imagepath) and os.path.exists(maskpath):

                                img_paths.append(imagepath)

                                mask_paths.append(maskpath)

                        else:

                            print('mask路径不存在:' + maskpath)

        return img_paths, mask_paths

    else:

        assert split == 'trainval'

        print('trainval set')

        train_img_folder = os.path.join(folder, 'leftImg8bit/train')

        train_mask_folder = os.path.join(folder, 'gtFine/train')

        val_img_folder = os.path.join(folder, 'leftImg8bit/val')

        val_mask_folder = os.path.join(folder, 'gtFine/val')

        train_img_paths, train_mask_paths = get_path_pairs(train_img_folder, train_mask_folder)

        val_img_paths, val_mask_paths = get_path_pairs(val_img_folder, val_mask_folder)

        img_paths = train_img_paths + val_img_paths

        mask_paths = train_mask_paths + val_mask_paths

    return img_paths, mask_paths


 

def get_citys_loader(root=os.path.expanduser('data/citys/'), split="train", mode="train",  # 获取训练和验证用的dataloader

                     base_size=1024, crop_size=(1024, 512),

                     batch_size=32, workers=4, pin=True):

    if mode == "train":

        input_transform = transforms.Compose([

            transforms.ColorJitter(brightness=0.45, contrast=0.45,

                                   saturation=0.45, hue=0.15),

            transforms.ToTensor(),

            # transforms.Normalize([.485, .456, .406], [.229, .224, .225])  # 为了配合检测预处理保持一致, 分割不做norm

        ])

    else:

        input_transform = transforms.Compose([

            transforms.ToTensor(),

            # transforms.Normalize([.485, .456, .406], [.229, .224, .225])  # 为了配合检测预处理保持一致, 分割不做norm

        ])

    dataset = CitySegmentation(root=root, split=split, mode=mode,

                               transform=input_transform,

                               base_size=base_size, crop_size=crop_size, low=0.65, high=3, sample_std=25)

    loader = data.DataLoader(dataset, batch_size=batch_size,

                             drop_last=  False, shuffle=True if mode == "train" else False,

                             num_workers=workers, pin_memory=pin)

    return loader


 

def get_citysbdd_loader(root=os.path.expanduser('data/citys/'), split="train", mode="train",  # 获取训练和验证用的dataloader

                     base_size=1024, crop_size=(1024, 512),

                     batch_size=32, workers=4, pin=True):

    if mode == "train":

        input_transform = transforms.Compose([

            transforms.ColorJitter(brightness=0.4, contrast=0.4,

                                   saturation=0.4, hue=0.05),

            transforms.ToTensor(),

            # transforms.Normalize([.485, .456, .406], [.229, .224, .225])  # 为了配合检测预处理保持一致, 分割不做norm

        ])

    else:

        input_transform = transforms.Compose([

            transforms.ToTensor(),

            # transforms.Normalize([.485, .456, .406], [.229, .224, .225])  # 为了配合检测预处理保持一致, 分割不做norm

        ])

    dataset = CityBddSegmentation(root=root, split=split, mode=mode,

                               transform=input_transform,

                               base_size=base_size, crop_size=crop_size, low=0.65, high=2, sample_std=40)

    loader = data.DataLoader(dataset, batch_size=batch_size,

                             drop_last=True if mode == "train" else False, shuffle=True if mode == "train" else False,

                             num_workers=workers, pin_memory=pin)

    return loader


 

# 默认custom_loader jitter和crop采用更保守的方案

def get_custom_loader(root=os.path.expanduser('data/citys/'), split="train", mode="train",  # 获取训练和验证用的dataloader

                     base_size=1024,  # crop_size=(1024, 1024), 注意 custom的corpsize=basesize

                     batch_size=32, workers=4, pin=True,sifting = False):

    if mode == "train":

        input_transform = transforms.Compose([

            # transforms.RandRotate([-15, 15], padding=0, ignore_label=255),

            # transforms.RandomGaussianBlur(),

            # transforms.RandomHorizontalFlip(),

            transforms.ColorJitter(brightness=0.45, contrast=0.45,

                                   saturation=0.45, hue=0.15),

            # transforms.GaussianBlur(),

            # transforms.RandomNoise(),

            transforms.ToTensor(),

            # transforms.Normalize([.485, .456, .406], [.229, .224, .225])  # 为了配合检测预处理保持一致, 分割不做norm

        ])

    else:

        input_transform = transforms.Compose([

            transforms.ToTensor(),

            # transforms.Normalize([.485, .456, .406], [.229, .224, .225])  # 为了配合检测预处理保持一致, 分割不做norm

        ])

    dataset = CustomSegmentation(root=root, split=split, mode=mode,

                               transform=input_transform,

                               base_size=base_size, crop_size=(480, base_size), low=0.85, high=1.15, sample_std=35)#crop_size=(base_size, base_size)

    if sifting:

            dataset = CustomSegmentation_sifting(root=root, split=split, mode=mode,

                               transform=input_transform,

                               base_size=base_size, crop_size=(480, base_size), low=0.85, high=1.15, sample_std=35)#crop_size=(base_size, base_size)

    loader = data.DataLoader(dataset, batch_size=batch_size,

                             drop_last=True if mode == "train" else False, shuffle=True if mode == "train" else False,

                             num_workers=workers, pin_memory=pin)

    return loader

# 默认custom_loader jitter和crop采用更保守的方案

def get_rm_loader(root=os.path.expanduser('data/citys/'), split="train", mode="train",  # 获取训练和验证用的dataloader

                     base_size=1024,  # crop_size=(1024, 1024), 注意 custom的corpsize=basesize

                     batch_size=32, workers=4, pin=True,sifting = False):

    if mode == "train":

        input_transform = transforms.Compose([

            transforms.ColorJitter(brightness=0.45, contrast=0.45,

                                   saturation=0.45, hue=0.15),

            # transforms.GaussianBlur(),

            # transforms.RandomNoise(),

            transforms.ToTensor(),

            # transforms.Normalize([.485, .456, .406], [.229, .224, .225])  # 为了配合检测预处理保持一致, 分割不做norm

        ])

    else:

        input_transform = transforms.Compose([

            transforms.ToTensor(),

            # transforms.Normalize([.485, .456, .406], [.229, .224, .225])  # 为了配合检测预处理保持一致, 分割不做norm

        ])

    dataset = RMSegmentation(root=root, split=split, mode=mode,

                               transform=input_transform,

                               base_size=base_size, crop_size=(480, base_size), low=0.85, high=1.15, sample_std=35)#crop_size=(base_size, base_size)

    if sifting:

        dataset = RMSegmentation_sifting(root=root, split=split, mode=mode,

                                transform=input_transform,

                                base_size=base_size, crop_size=(480, base_size), low=0.85, high=1.15, sample_std=35)#crop_size=(base_size, base_size)      

    loader = data.DataLoader(dataset, batch_size=batch_size,

                             drop_last=True if mode == "train" else False, shuffle=True if mode == "train" else False,

                             num_workers=workers, pin_memory=pin)

    return loader


 

if __name__ == "__main__":

    t = transforms.Compose([  # 用于打断点时候测试色彩和大小裁剪变换是否合理

        transforms.ColorJitter(brightness=0.45, contrast=0.45,

                               saturation=0.45, hue=0.1)])

    # trainloader = get_citys_loader(root='./data/citys/', split="val", mode="train", base_size=1024, crop_size=(832, 416), workers=0, pin=True, batch_size=4)

    trainloader = get_custom_loader(root=['/ai/DataSets/TopViewMultiTaskPerc_xmlin/roadmarking/annotations/ann_zh/new_dataset/val_v29_20250122_gt.txt'], split="train", mode="train", base_size=544, workers=0, pin=True, batch_size=4)

    import time

    t1 = time.time()

    for i, data in enumerate(trainloader):

        print(f"batch: {i}")

    print(f"cost {(time.time()-t1)/(i+1)} per batch load")

    pass

    pass

Logo

有“AI”的1024 = 2048,欢迎大家加入2048 AI社区

更多推荐