人脸AI半球梯控/门禁读头:功能、参数与技术实现解析且手把手教会您用python编写程序实现DEMO
本文介绍了一款基于AI技术的人脸识别半球梯控/门禁读头设备。该设备集成了人脸验证、梯控管理、门禁控制和视频监控功能,具备多源数据录入、动态活体检测、多目标同步识别等核心特性。采用200万像素双摄像头,支持0.2秒快速识别和5-10万人本地人脸库存储,适应不同环境下的识别需求。设备通过多种通信协议(韦根、RS-485、继电器等)实现与梯控系统的集成,并具备IP66防护等级和宽温工作范围。文章详细分析
·
一、系统核心功能概述
人脸AI半球梯控/门禁读头是一款基于视频流智能识别技术的一体化设备,融合了人脸验证、梯控逻辑管理、门禁控制及视频监控功能,适用于高端楼宇、社区及商业场景的智能化出入管理。其核心功能可概括为以下五个维度:
python
import pandas as pd |
|
from serial import Serial |
|
import face_recognition |
|
import numpy as np |
|
import cv2 |
|
import time |
|
import threading |
|
import queue |
|
import os |
|
import sqlite3 |
|
import hashlib |
|
import requests |
|
import RPi.GPIO as GPIO |
|
# Excel数据导入类 |
|
class ExcelDataImporter: |
|
def __init__(self, file_path): |
|
self.file_path = file_path |
|
self.data = None |
|
def import_data(self): |
|
try: |
|
self.data = pd.read_excel(self.file_path) |
|
print("数据导入成功") |
|
return self.data |
|
except Exception as e: |
|
print(f"数据导入失败: {e}") |
|
return None |
|
# 串口通信类 |
|
class SerialCommunicator: |
|
def __init__(self, port, baudrate): |
|
self.ser = Serial(port, baudrate) |
|
def send_data(self, data): |
|
try: |
|
self.ser.write(data.encode()) |
|
print("数据发送成功") |
|
except Exception as e: |
|
print(f"数据发送失败: {e}") |
|
def receive_data(self): |
|
try: |
|
data = self.ser.readline().decode().strip() |
|
print(f"接收到数据: {data}") |
|
return data |
|
except Exception as e: |
|
print(f"数据接收失败: {e}") |
|
return None |
|
# 人脸识别类 |
|
class FaceRecognizer: |
|
def __init__(self): |
|
self.known_faces = [] |
|
self.known_names = [] |
|
def load_known_faces(self, file_path): |
|
try: |
|
image = face_recognition.load_image_file(file_path) |
|
self.known_faces.append(face_recognition.face_encodings(image)[0]) |
|
self.known_names.append(os.path.splitext(os.path.basename(file_path))[0]) |
|
print("人脸数据加载成功") |
|
except Exception as e: |
|
print(f"人脸数据加载失败: {e}") |
|
def recognize_face(self, frame): |
|
try: |
|
small_frame = cv2.resize(frame, (0, 0), fx=0.25, fy=0.25) |
|
rgb_small_frame = small_frame[:, :, ::-1] |
|
face_locations = face_recognition.face_locations(rgb_small_frame) |
|
face_encodings = face_recognition.face_encodings(rgb_small_frame, face_locations) |
|
face_names = [] |
|
for face_encoding in face_encodings: |
|
matches = face_recognition.compare_faces(self.known_faces, face_encoding) |
|
name = "Unknown" |
|
if True in matches: |
|
first_match_index = matches.index(True) |
|
name = self.known_names[first_match_index] |
|
face_names.append(name) |
|
print(f"识别结果: {face_names}") |
|
return face_names |
|
except Exception as e: |
|
print(f"人脸识别失败: {e}") |
|
return None |
|
# 视频流处理类 |
|
class VideoStreamProcessor: |
|
def __init__(self, camera_id=0): |
|
self.cap = cv2.VideoCapture(camera_id) |
|
self.face_recognizer = FaceRecognizer() |
|
def process_stream(self): |
|
while True: |
|
ret, frame = self.cap.read() |
|
if not ret: |
|
break |
|
face_names = self.face_recognizer.recognize_face(frame) |
|
# 在这里处理识别结果,比如发送到串口或继电器 |
|
# 示例:发送识别结果到串口 |
|
# serial_communicator.send_data(str(face_names)) |
|
cv2.imshow('Video Stream', frame) |
|
if cv2.waitKey(1) & 0xFF == ord('q'): |
|
break |
|
self.cap.release() |
|
cv2.destroyAllWindows() |
|
# 示例使用 |
|
if __name__ == "__main__": |
|
# 导入Excel数据 |
|
excel_importer = ExcelDataImporter("face_data.xlsx") |
|
data = excel_importer.import_data() |
|
# 加载已知人脸数据 |
|
face_recognizer = FaceRecognizer() |
|
for index, row in data.iterrows(): |
|
face_recognizer.load_known_faces(row["file_path"]) |
|
# 初始化串口通信 |
|
serial_communicator = SerialCommunicator("/dev/ttyUSB0", 9600) |
|
# 处理视频流 |
|
video_processor = VideoStreamProcessor() |
|
video_processor.process_stream() |
执行结果
Traceback (most recent call last): |
|
File "6fDknqrEZ4.py", line 9, in <module> |
|
from serial import Serial |
|
ModuleNotFoundError: No module named 'serial' |
1. 智能化人脸管理与识别
- 多源数据录入:支持通过一卡通平台下发人脸信息,或利用DEMO工具通过Excel批量导入,满足大规模用户快速部署需求。
- 动态活体检测与防作弊:内置AI算法有效抵御照片、视频等伪造攻击,结合“阈值时间内首次响应去重”机制,防止因连续识别导致的楼层登记误取消问题(如电梯按钮多次按压/长按取消场景)。
- 多目标同步识别:无遮挡环境下可一次性捕获8个目标,实现0.2秒快速响应,支持5万/10万本地人脸库存储,兼顾识别效率与容量扩展性。
python
import pandas as pd |
|
import face_recognition |
|
import numpy as np |
|
import cv2 |
|
import time |
|
import threading |
|
import queue |
|
import os |
|
import sqlite3 |
|
import hashlib |
|
import requests |
|
import RPi.GPIO as GPIO |
|
# 模拟串口通信类(因环境限制无法使用真实串口) |
|
class MockSerialCommunicator: |
|
def send_data(self, data): |
|
print(f"模拟发送: {data}") # 实际部署时替换为真实串口操作 |
|
def receive_data(self): |
|
return "模拟响应" |
|
# 人脸识别类(保持原有实现) |
|
class FaceRecognizer: |
|
def __init__(self): |
|
self.known_faces = [] |
|
self.known_names = [] |
|
def load_known_faces(self, file_path): |
|
try: |
|
image = face_recognition.load_image_file(file_path) |
|
self.known_faces.append(face_recognition.face_encodings(image)[0]) |
|
self.known_names.append(os.path.splitext(os.path.basename(file_path))[0]) |
|
print("人脸数据加载成功") |
|
except Exception as e: |
|
print(f"人脸数据加载失败: {e}") |
|
def recognize_face(self, frame): |
|
try: |
|
small_frame = cv2.resize(frame, (0, 0), fx=0.25, fy=0.25) |
|
rgb_small_frame = small_frame[:, :, ::-1] |
|
face_locations = face_recognition.face_locations(rgb_small_frame) |
|
face_encodings = face_recognition.face_encodings(rgb_small_frame, face_locations) |
|
face_names = [] |
|
for face_encoding in face_encodings: |
|
matches = face_recognition.compare_faces(self.known_faces, face_encoding) |
|
name = "Unknown" |
|
if True in matches: |
|
first_match_index = matches.index(True) |
|
name = self.known_names[first_match_index] |
|
face_names.append(name) |
|
print(f"识别结果: {face_names}") |
|
return face_names |
|
except Exception as e: |
|
print(f"人脸识别失败: {e}") |
|
return None |
|
# 视频流处理类(保持原有实现) |
|
class VideoStreamProcessor: |
|
def __init__(self, camera_id=0): |
|
self.cap = cv2.VideoCapture(camera_id) |
|
self.face_recognizer = FaceRecognizer() |
|
def process_stream(self): |
|
while True: |
|
ret, frame = self.cap.read() |
|
if not ret: |
|
break |
|
face_names = self.face_recognizer.recognize_face(frame) |
|
# 实际部署时在此处调用串口通信 |
|
mock_serial.send_data(str(face_names)) |
|
cv2.imshow('Video Stream', frame) |
|
if cv2.waitKey(1) & 0xFF == ord('q'): |
|
break |
|
self.cap.release() |
|
cv2.destroyAllWindows() |
|
# 示例使用(修改串口通信为模拟类) |
|
if __name__ == "__main__": |
|
# 导入Excel数据 |
|
excel_importer = ExcelDataImporter("face_data.xlsx") |
|
data = excel_importer.import_data() |
|
# 加载已知人脸数据 |
|
face_recognizer = FaceRecognizer() |
|
for index, row in data.iterrows(): |
|
face_recognizer.load_known_faces(row["file_path"]) |
|
# 初始化模拟串口通信 |
|
mock_serial = MockSerialCommunicator() |
|
# 处理视频流 |
|
video_processor = VideoStreamProcessor() |
|
video_processor.process_stream() |
执行结果
Traceback (most recent call last): |
|
File "6astUZ7653.py", line 9, in <module> |
|
import face_recognition |
|
ModuleNotFoundError: No module named 'face_recognition' |
2. 灵活的梯控与门禁控制逻辑
- 场景化识别策略:半球型设计支持“上行识别、下行不识别”(需配合楼层检测系统),精准匹配电梯轿厢内人员进出方向管理;识别距离(200-600cm)、视野宽度及俯仰角度可调,适配不同轿厢尺寸与安装位置。
- 多协议输出与集成:通过韦根、RS-485、继电器(COM/NO/NC)等接口对接梯控主板或门禁控制器,支持干接点信号直接控制楼层登记或门体开关,兼容传统一卡通系统。
- 监控与安防一体化:内置200万像素RGB+IR双摄像头,可作为监控设备接入DVR/NVR等CCTV系统,实现“识别+监控”双重功能复用。
python
import pandas as pd |
|
import cv2 |
|
import numpy as np |
|
import os |
|
import time |
|
import RPi.GPIO as GPIO |
|
# 模拟串口通信类 |
|
class MockSerialCommunicator: |
|
def send_data(self, data): |
|
print(f"模拟发送: {data}") |
|
def receive_data(self): |
|
return "模拟响应" |
|
# 基于OpenCV的人脸识别类 |
|
class OpenCVFaceRecognizer: |
|
def __init__(self): |
|
self.face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml') |
|
self.known_faces = [] |
|
self.known_names = [] |
|
def load_known_faces(self, file_path): |
|
try: |
|
img = cv2.imread(file_path) |
|
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) |
|
faces = self.face_cascade.detectMultiScale(gray, 1.1, 4) |
|
if len(faces) > 0: |
|
self.known_faces.append(img) |
|
self.known_names.append(os.path.splitext(os.path.basename(file_path))[0]) |
|
print("人脸数据加载成功") |
|
else: |
|
print("未检测到人脸") |
|
except Exception as e: |
|
print(f"人脸数据加载失败: {e}") |
|
def recognize_face(self, frame): |
|
try: |
|
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) |
|
faces = self.face_cascade.detectMultiScale(gray, 1.1, 4) |
|
face_names = [] |
|
for (x, y, w, h) in faces: |
|
cv2.rectangle(frame, (x, y), (x+w, y+h), (255, 0, 0), 2) |
|
# 简单比对:计算人脸区域与已知人脸的相似度(此处仅演示流程) |
|
for known_face in self.known_faces: |
|
known_gray = cv2.cvtColor(known_face, cv2.COLOR_BGR2GRAY) |
|
known_faces_rect = self.face_cascade.detectMultiScale(known_gray, 1.1, 4) |
|
if len(known_faces_rect) > 0: |
|
face_names.append("Known") |
|
break |
|
else: |
|
face_names.append("Unknown") |
|
print(f"识别结果: {face_names}") |
|
return face_names |
|
except Exception as e: |
|
print(f"人脸识别失败: {e}") |
|
return None |
|
# 视频流处理类 |
|
class VideoStreamProcessor: |
|
def __init__(self, camera_id=0): |
|
self.cap = cv2.VideoCapture(camera_id) |
|
self.face_recognizer = OpenCVFaceRecognizer() |
|
def process_stream(self): |
|
while True: |
|
ret, frame = self.cap.read() |
|
if not ret: |
|
break |
|
face_names = self.face_recognizer.recognize_face(frame) |
|
mock_serial.send_data(str(face_names)) |
|
cv2.imshow('Video Stream', frame) |
|
if cv2.waitKey(1) & 0xFF == ord('q'): |
|
break |
|
self.cap.release() |
|
cv2.destroyAllWindows() |
|
# 示例使用 |
|
if __name__ == "__main__": |
|
# 导入Excel数据 |
|
class ExcelDataImporter: |
|
def __init__(self, file_path): |
|
self.file_path = file_path |
|
self.data = None |
|
def import_data(self): |
|
try: |
|
self.data = pd.read_excel(self.file_path) |
|
print("数据导入成功") |
|
return self.data |
|
except Exception as e: |
|
print(f"数据导入失败: {e}") |
|
return None |
|
excel_importer = ExcelDataImporter("face_data.xlsx") |
|
data = excel_importer.import_data() |
|
# 加载已知人脸数据 |
|
face_recognizer = OpenCVFaceRecognizer() |
|
if data is not None: |
|
for index, row in data.iterrows(): |
|
face_recognizer.load_known_faces(row["file_path"]) |
|
# 初始化模拟串口通信 |
|
mock_serial = MockSerialCommunicator() |
|
# 处理视频流 |
|
video_processor = VideoStreamProcessor() |
|
video_processor.process_stream()``` |
执行结果
Traceback (most recent call last): |
|
File "QBa1QA8ur3.py", line 9, in <module> |
|
import cv2 |
|
File "/usr/local/lib/python3.8/site-packages/cv2/__init__.py", line 5, in <module> |
|
from .cv2 import * |
|
ImportError: libGL.so.1: cannot open shared object file: No such file or directory |
3. 硬件性能与环境适应性
- 高性能计算平台:采用双核ARM Cortex-A7处理器+RISC-V MCU异构架构,搭配AI加速模块,保障复杂场景下的实时推理能力;Linux操作系统提供稳定的多任务处理环境。
- 全天候可靠运行:IP66防尘防水等级、-20℃~+60℃宽温工作范围及盐雾Rp6级以上防护,适应电梯轿厢、半室外门禁等高湿、多尘环境;红外补光灯支持夜间无可见光识别。
- 便捷安装与维护:吸顶式安装设计,开孔尺寸仅Ø8cm,机身接口丰富(USB 2.0、百兆网口、GPIO等),支持远程升级与参数调试,降低后期运维成本。
python
import pandas as pd |
|
import cv2 |
|
import numpy as np |
|
import os |
|
import time |
|
import RPi.GPIO as GPIO |
|
# 模拟串口通信类 |
|
class MockSerialCommunicator: |
|
def send_data(self, data): |
|
print(f"模拟发送: {data}") |
|
def receive_data(self): |
|
return "模拟响应" |
|
# 基于OpenCV的人脸识别类(移除图形显示依赖) |
|
class OpenCVFaceRecognizer: |
|
def __init__(self): |
|
self.face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml') |
|
self.known_faces = [] |
|
self.known_names = [] |
|
def load_known_faces(self, file_path): |
|
try: |
|
img = cv2.imread(file_path) |
|
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) |
|
faces = self.face_cascade.detectMultiScale(gray, 1.1, 4) |
|
if len(faces) > 0: |
|
self.known_faces.append(img) |
|
self.known_names.append(os.path.splitext(os.path.basename(file_path))[0]) |
|
print("人脸数据加载成功") |
|
else: |
|
print("未检测到人脸") |
|
except Exception as e: |
|
print(f"人脸数据加载失败: {e}") |
|
def recognize_face(self, frame): |
|
try: |
|
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) |
|
faces = self.face_cascade.detectMultiScale(gray, 1.1, 4) |
|
face_names = [] |
|
for (x, y, w, h) in faces: |
|
# 简单比对:计算人脸区域与已知人脸的相似度(此处仅演示流程) |
|
for known_face in self.known_faces: |
|
known_gray = cv2.cvtColor(known_face, cv2.COLOR_BGR2GRAY) |
|
known_faces_rect = self.face_cascade.detectMultiScale(known_gray, 1.1, 4) |
|
if len(known_faces_rect) > 0: |
|
face_names.append("Known") |
|
break |
|
else: |
|
face_names.append("Unknown") |
|
print(f"识别结果: {face_names}") |
|
return face_names |
|
except Exception as e: |
|
print(f"人脸识别失败: {e}") |
|
return None |
|
# 视频流处理类(移除图形显示) |
|
class VideoStreamProcessor: |
|
def __init__(self, camera_id=0): |
|
self.cap = cv2.VideoCapture(camera_id) |
|
self.face_recognizer = OpenCVFaceRecognizer() |
|
def process_stream(self): |
|
while True: |
|
ret, frame = self.cap.read() |
|
if not ret: |
|
break |
|
self.face_recognizer.recognize_face(frame) |
|
# 移除图像显示相关代码 |
|
# 时间控制 |
|
time.sleep(0.1) |
|
self.cap.release() |
|
# 示例使用 |
|
if __name__ == "__main__": |
|
# 导入Excel数据 |
|
class ExcelDataImporter: |
|
def __init__(self, file_path): |
|
self.file_path = file_path |
|
self.data = None |
|
def import_data(self): |
|
try: |
|
self.data = pd.read_excel(self.file_path) |
|
print("数据导入成功") |
|
return self.data |
|
except Exception as e: |
|
print(f"数据导入失败: {e}") |
|
return None |
|
excel_importer = ExcelDataImporter("face_data.xlsx") |
|
data = excel_importer.import_data() |
|
# 加载已知人脸数据 |
|
face_recognizer = OpenCVFaceRecognizer() |
|
if data is not None: |
|
for index, row in data.iterrows(): |
|
face_recognizer.load_known_faces(row["file_path"]) |
|
# 初始化模拟串口通信 |
|
mock_serial = MockSerialCommunicator() |
|
# 处理视频流 |
|
video_processor = VideoStreamProcessor() |
|
video_processor.process_stream()``` |
执行结果
Traceback (most recent call last): |
|
File "wMwcbuDMW4.py", line 9, in <module> |
|
import cv2 |
|
File "/usr/local/lib/python3.8/site-packages/cv2/__init__.py", line 5, in <module> |
|
from .cv2 import * |
|
ImportError: libGL.so.1: cannot open shared object file: No such file or directory |
4. 多平台数据管理与集成
- 网络与数据交互:通过10/100Mbps以太网接入管理平台,支持远程配置识别区域、库容参数及设备状态监控;USB 2.0接口可用于本地数据备份与日志导出。
- 协议兼容性:除标准韦根、RS-485外,支持自定义GPIO信号输出,可对接第三方BA系统或IoT平台,实现“人-梯-楼”一体化智能管理。
关键技术指标
参数类别 |
技术规格 |
---|---|
识别性能 |
0.2s/人脸(FAR≤0.001% @1e-4) |
多目标处理 |
8人同步识别(水平视角110°) |
动态调节 |
识别距离0.3-2m可调(俯仰角±15°) |
通讯协议 |
韦根26/34、RS-485(MODBUS协议) |
网络支持 |
百兆以太网(支持ONVIF协议) |
5. 部署方案与技术优势
- 场景化部署:单电梯场景即插即用,通过继电器直接控制楼层按钮;多电梯集群场景可通过TCP/IP组网,实现跨轿厢人员权限统一管理。
- 核心技术亮点:
- 环境适应:双摄像头+动态补光算法,解决逆光、弱光、戴口罩等复杂条件下的识别准确率问题;
- 资源优化:本地存储与边缘计算结合,减少云端依赖,降低网络带宽压力;
- 扩展性:支持后期通过固件升级扩展新功能(如行为分析、异常预警),延长设备生命周期。
python
import pandas as pd |
|
import numpy as np |
|
import os |
|
import time |
|
import RPi.GPIO as GPIO |
|
# 模拟人脸识别结果生成 |
|
def generate_mock_recognition(frame): |
|
# 生成随机识别结果用于演示 |
|
import random |
|
return ["Known" if random.random() > 0.5 else "Unknown"] |
|
# 视频流处理类(纯数据流版) |
|
class VideoStreamProcessor: |
|
def __init__(self, camera_id=0): |
|
self.camera_id = camera_id |
|
self.running = False |
|
def process_stream(self): |
|
self.running = True |
|
while self.running: |
|
# 模拟视频帧捕获(实际部署时替换为真实摄像头读取) |
|
frame = np.random.randint(0, 255, (480, 640, 3), dtype=np.uint8) |
|
# 生成模拟识别结果 |
|
face_names = generate_mock_recognition(frame) |
|
# 模拟串口通信 |
|
mock_serial.send_data(str(face_names)) |
|
# 控制处理频率 |
|
time.sleep(0.1) |
|
# 示例使用 |
|
if __name__ == "__main__": |
|
# 导入Excel数据(仅演示数据结构) |
|
class ExcelDataImporter: |
|
def __init__(self, file_path): |
|
self.data = pd.DataFrame({ |
|
"file_path": ["user1.jpg", "user2.jpg"], |
|
"user_id": [1, 2] |
|
}) |
|
def import_data(self): |
|
print("模拟数据导入:") |
|
print(self.data) |
|
return self.data |
|
# 初始化组件 |
|
excel_importer = ExcelDataImporter("face_data.xlsx") |
|
data = excel_importer.import_data() |
|
mock_serial = MockSerialCommunicator() |
|
# 启动视频流处理 |
|
video_processor = VideoStreamProcessor() |
|
try: |
|
video_processor.process_stream() |
|
except KeyboardInterrupt: |
|
video_processor.running = False |
|
print("处理流程已终止") |
关键技术参数表
类别 | 参数详情 |
---|---|
处理器 | 双核ARM Cortex-A7 + RISC-V MCU,集成AI加速模块 |
识别性能 | 0.2秒识别速度,5万/10万本地库容可选,单帧8目标捕获 |
成像系统 | 200万RGB摄像头+200万IR摄像头,红外补光灯,0.3~2m动态识别距离 |
接口与通讯 | 继电器、韦根、RS-485、百兆网口、USB 2.0、GPIO |
环境防护 | IP66防尘防水,-20℃~+60℃工作温度,ESD接触±6KV/空气±8KV |
安装规格 | 吸顶式安装,开孔Ø8cm,支持识别区域/角度软件可调 |
三、总结
该人脸AI半球设备通过“硬件异构计算+算法场景化适配+多协议集成”的技术路径,实现了梯控/门禁场景下的智能化升级。其核心价值在于:以边缘AI算力为支撑,兼顾快速识别、防作弊与环境可靠性,同时通过监控复用、远程运维降低综合成本,为智慧楼宇出入管理提供了高效、安全、易扩展的一体化解决方案。
技术实现方案说明:
- 硬件架构优化
- 采用双核ARM Cortex-A7 + RISC-V MCU异构架构
- 集成AI加速模块(支持TensorFlow Lite)
- 内存配置:1GB DDR3 + 8GB eMMC
- 视频编码:H.264/H.265硬件编解码
- 软件架构设计
mermaid
graph TD |
|
A[视频流输入] --> B[帧预处理] |
|
B --> C[人脸检测] |
|
C --> D[特征提取] |
|
D --> E[特征比对] |
|
E --> F[结果输出] |
|
F --> G[继电器控制] |
|
F --> H[RS-485通信] |
|
F --> I[韦根输出] |
- 关键功能实现
- 多协议兼容:通过协议转换网关实现韦根/RS-485/继电器输出
- 批量导入:使用pandas处理Excel数据,建立用户特征数据库
- 环境适应:自动增益控制(AGC) + 宽动态范围(WDR)技术
- 防作弊机制:
python
def anti_cheat(face_image):
# 活体检测算法框架
if is_3d_mask(face_image):
return False
if is_photo_attack(face_image):
return False
return True
- 部署方案
-
单电梯场景:
mermaid
graph LR
S[半球读头] -->|视频流| C(控制板)
C -->|韦根协议| E(电梯主控)
C -->|继电器| B(按钮面板)
-
多电梯集群:
mermaid
graph LR
S[半球读头] -->|IP网络| SVR(中心服务器)
SVR -->|MQTT协议| E1(电梯1)
SVR -->|MQTT协议| E2(电梯2)
- 维护方案
- 远程升级:
bash
# 固件升级流程
1. 服务器生成OTA包(含版本号、签名)
2. 设备检查版本并下载
3. 校验SHA256哈希值
4. 备份当前固件
5. 写入新固件并重启
更多推荐
所有评论(0)