一、系统核心功能概述

人脸AI半球梯控/门禁读头是一款基于视频流智能识别技术的一体化设备,融合了人脸验证、梯控逻辑管理、门禁控制及视频监控功能,适用于高端楼宇、社区及商业场景的智能化出入管理。其核心功能可概括为以下五个维度:


python

import pandas as pd
from serial import Serial
import face_recognition
import numpy as np
import cv2
import time
import threading
import queue
import os
import sqlite3
import hashlib
import requests
import RPi.GPIO as GPIO
# Excel数据导入类
class ExcelDataImporter:
def __init__(self, file_path):
self.file_path = file_path
self.data = None
def import_data(self):
try:
self.data = pd.read_excel(self.file_path)
print("数据导入成功")
return self.data
except Exception as e:
print(f"数据导入失败: {e}")
return None
# 串口通信类
class SerialCommunicator:
def __init__(self, port, baudrate):
self.ser = Serial(port, baudrate)
def send_data(self, data):
try:
self.ser.write(data.encode())
print("数据发送成功")
except Exception as e:
print(f"数据发送失败: {e}")
def receive_data(self):
try:
data = self.ser.readline().decode().strip()
print(f"接收到数据: {data}")
return data
except Exception as e:
print(f"数据接收失败: {e}")
return None
# 人脸识别类
class FaceRecognizer:
def __init__(self):
self.known_faces = []
self.known_names = []
def load_known_faces(self, file_path):
try:
image = face_recognition.load_image_file(file_path)
self.known_faces.append(face_recognition.face_encodings(image)[0])
self.known_names.append(os.path.splitext(os.path.basename(file_path))[0])
print("人脸数据加载成功")
except Exception as e:
print(f"人脸数据加载失败: {e}")
def recognize_face(self, frame):
try:
small_frame = cv2.resize(frame, (0, 0), fx=0.25, fy=0.25)
rgb_small_frame = small_frame[:, :, ::-1]
face_locations = face_recognition.face_locations(rgb_small_frame)
face_encodings = face_recognition.face_encodings(rgb_small_frame, face_locations)
face_names = []
for face_encoding in face_encodings:
matches = face_recognition.compare_faces(self.known_faces, face_encoding)
name = "Unknown"
if True in matches:
first_match_index = matches.index(True)
name = self.known_names[first_match_index]
face_names.append(name)
print(f"识别结果: {face_names}")
return face_names
except Exception as e:
print(f"人脸识别失败: {e}")
return None
# 视频流处理类
class VideoStreamProcessor:
def __init__(self, camera_id=0):
self.cap = cv2.VideoCapture(camera_id)
self.face_recognizer = FaceRecognizer()
def process_stream(self):
while True:
ret, frame = self.cap.read()
if not ret:
break
face_names = self.face_recognizer.recognize_face(frame)
# 在这里处理识别结果,比如发送到串口或继电器
# 示例:发送识别结果到串口
# serial_communicator.send_data(str(face_names))
cv2.imshow('Video Stream', frame)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
self.cap.release()
cv2.destroyAllWindows()
# 示例使用
if __name__ == "__main__":
# 导入Excel数据
excel_importer = ExcelDataImporter("face_data.xlsx")
data = excel_importer.import_data()
# 加载已知人脸数据
face_recognizer = FaceRecognizer()
for index, row in data.iterrows():
face_recognizer.load_known_faces(row["file_path"])
# 初始化串口通信
serial_communicator = SerialCommunicator("/dev/ttyUSB0", 9600)
# 处理视频流
video_processor = VideoStreamProcessor()
video_processor.process_stream()

执行结果

Traceback (most recent call last):
File "6fDknqrEZ4.py", line 9, in <module>
from serial import Serial
ModuleNotFoundError: No module named 'serial'

1. 智能化人脸管理与识别

  • 多源数据录入:支持通过一卡通平台下发人脸信息,或利用DEMO工具通过Excel批量导入,满足大规模用户快速部署需求。
  • 动态活体检测与防作弊:内置AI算法有效抵御照片、视频等伪造攻击,结合“阈值时间内首次响应去重”机制,防止因连续识别导致的楼层登记误取消问题(如电梯按钮多次按压/长按取消场景)。
  • 多目标同步识别:无遮挡环境下可一次性捕获8个目标,实现0.2秒快速响应,支持5万/10万本地人脸库存储,兼顾识别效率与容量扩展性。


python

import pandas as pd
import face_recognition
import numpy as np
import cv2
import time
import threading
import queue
import os
import sqlite3
import hashlib
import requests
import RPi.GPIO as GPIO
# 模拟串口通信类(因环境限制无法使用真实串口)
class MockSerialCommunicator:
def send_data(self, data):
print(f"模拟发送: {data}") # 实际部署时替换为真实串口操作
def receive_data(self):
return "模拟响应"
# 人脸识别类(保持原有实现)
class FaceRecognizer:
def __init__(self):
self.known_faces = []
self.known_names = []
def load_known_faces(self, file_path):
try:
image = face_recognition.load_image_file(file_path)
self.known_faces.append(face_recognition.face_encodings(image)[0])
self.known_names.append(os.path.splitext(os.path.basename(file_path))[0])
print("人脸数据加载成功")
except Exception as e:
print(f"人脸数据加载失败: {e}")
def recognize_face(self, frame):
try:
small_frame = cv2.resize(frame, (0, 0), fx=0.25, fy=0.25)
rgb_small_frame = small_frame[:, :, ::-1]
face_locations = face_recognition.face_locations(rgb_small_frame)
face_encodings = face_recognition.face_encodings(rgb_small_frame, face_locations)
face_names = []
for face_encoding in face_encodings:
matches = face_recognition.compare_faces(self.known_faces, face_encoding)
name = "Unknown"
if True in matches:
first_match_index = matches.index(True)
name = self.known_names[first_match_index]
face_names.append(name)
print(f"识别结果: {face_names}")
return face_names
except Exception as e:
print(f"人脸识别失败: {e}")
return None
# 视频流处理类(保持原有实现)
class VideoStreamProcessor:
def __init__(self, camera_id=0):
self.cap = cv2.VideoCapture(camera_id)
self.face_recognizer = FaceRecognizer()
def process_stream(self):
while True:
ret, frame = self.cap.read()
if not ret:
break
face_names = self.face_recognizer.recognize_face(frame)
# 实际部署时在此处调用串口通信
mock_serial.send_data(str(face_names))
cv2.imshow('Video Stream', frame)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
self.cap.release()
cv2.destroyAllWindows()
# 示例使用(修改串口通信为模拟类)
if __name__ == "__main__":
# 导入Excel数据
excel_importer = ExcelDataImporter("face_data.xlsx")
data = excel_importer.import_data()
# 加载已知人脸数据
face_recognizer = FaceRecognizer()
for index, row in data.iterrows():
face_recognizer.load_known_faces(row["file_path"])
# 初始化模拟串口通信
mock_serial = MockSerialCommunicator()
# 处理视频流
video_processor = VideoStreamProcessor()
video_processor.process_stream()

执行结果

Traceback (most recent call last):
File "6astUZ7653.py", line 9, in <module>
import face_recognition
ModuleNotFoundError: No module named 'face_recognition'

2. 灵活的梯控与门禁控制逻辑

  • 场景化识别策略:半球型设计支持“上行识别、下行不识别”(需配合楼层检测系统),精准匹配电梯轿厢内人员进出方向管理;识别距离(200-600cm)、视野宽度及俯仰角度可调,适配不同轿厢尺寸与安装位置。
  • 多协议输出与集成:通过韦根、RS-485、继电器(COM/NO/NC)等接口对接梯控主板或门禁控制器,支持干接点信号直接控制楼层登记或门体开关,兼容传统一卡通系统。
  • 监控与安防一体化:内置200万像素RGB+IR双摄像头,可作为监控设备接入DVR/NVR等CCTV系统,实现“识别+监控”双重功能复用。

python

import pandas as pd
import cv2
import numpy as np
import os
import time
import RPi.GPIO as GPIO
# 模拟串口通信类
class MockSerialCommunicator:
def send_data(self, data):
print(f"模拟发送: {data}")
def receive_data(self):
return "模拟响应"
# 基于OpenCV的人脸识别类
class OpenCVFaceRecognizer:
def __init__(self):
self.face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml')
self.known_faces = []
self.known_names = []
def load_known_faces(self, file_path):
try:
img = cv2.imread(file_path)
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
faces = self.face_cascade.detectMultiScale(gray, 1.1, 4)
if len(faces) > 0:
self.known_faces.append(img)
self.known_names.append(os.path.splitext(os.path.basename(file_path))[0])
print("人脸数据加载成功")
else:
print("未检测到人脸")
except Exception as e:
print(f"人脸数据加载失败: {e}")
def recognize_face(self, frame):
try:
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
faces = self.face_cascade.detectMultiScale(gray, 1.1, 4)
face_names = []
for (x, y, w, h) in faces:
cv2.rectangle(frame, (x, y), (x+w, y+h), (255, 0, 0), 2)
# 简单比对:计算人脸区域与已知人脸的相似度(此处仅演示流程)
for known_face in self.known_faces:
known_gray = cv2.cvtColor(known_face, cv2.COLOR_BGR2GRAY)
known_faces_rect = self.face_cascade.detectMultiScale(known_gray, 1.1, 4)
if len(known_faces_rect) > 0:
face_names.append("Known")
break
else:
face_names.append("Unknown")
print(f"识别结果: {face_names}")
return face_names
except Exception as e:
print(f"人脸识别失败: {e}")
return None
# 视频流处理类
class VideoStreamProcessor:
def __init__(self, camera_id=0):
self.cap = cv2.VideoCapture(camera_id)
self.face_recognizer = OpenCVFaceRecognizer()
def process_stream(self):
while True:
ret, frame = self.cap.read()
if not ret:
break
face_names = self.face_recognizer.recognize_face(frame)
mock_serial.send_data(str(face_names))
cv2.imshow('Video Stream', frame)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
self.cap.release()
cv2.destroyAllWindows()
# 示例使用
if __name__ == "__main__":
# 导入Excel数据
class ExcelDataImporter:
def __init__(self, file_path):
self.file_path = file_path
self.data = None
def import_data(self):
try:
self.data = pd.read_excel(self.file_path)
print("数据导入成功")
return self.data
except Exception as e:
print(f"数据导入失败: {e}")
return None
excel_importer = ExcelDataImporter("face_data.xlsx")
data = excel_importer.import_data()
# 加载已知人脸数据
face_recognizer = OpenCVFaceRecognizer()
if data is not None:
for index, row in data.iterrows():
face_recognizer.load_known_faces(row["file_path"])
# 初始化模拟串口通信
mock_serial = MockSerialCommunicator()
# 处理视频流
video_processor = VideoStreamProcessor()
video_processor.process_stream()```

执行结果

Traceback (most recent call last):
File "QBa1QA8ur3.py", line 9, in <module>
import cv2
File "/usr/local/lib/python3.8/site-packages/cv2/__init__.py", line 5, in <module>
from .cv2 import *
ImportError: libGL.so.1: cannot open shared object file: No such file or directory

3. 硬件性能与环境适应性

  • 高性能计算平台:采用双核ARM Cortex-A7处理器+RISC-V MCU异构架构,搭配AI加速模块,保障复杂场景下的实时推理能力;Linux操作系统提供稳定的多任务处理环境。
  • 全天候可靠运行:IP66防尘防水等级、-20℃~+60℃宽温工作范围及盐雾Rp6级以上防护,适应电梯轿厢、半室外门禁等高湿、多尘环境;红外补光灯支持夜间无可见光识别。
  • 便捷安装与维护:吸顶式安装设计,开孔尺寸仅Ø8cm,机身接口丰富(USB 2.0、百兆网口、GPIO等),支持远程升级与参数调试,降低后期运维成本。

python

import pandas as pd
import cv2
import numpy as np
import os
import time
import RPi.GPIO as GPIO
# 模拟串口通信类
class MockSerialCommunicator:
def send_data(self, data):
print(f"模拟发送: {data}")
def receive_data(self):
return "模拟响应"
# 基于OpenCV的人脸识别类(移除图形显示依赖)
class OpenCVFaceRecognizer:
def __init__(self):
self.face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml')
self.known_faces = []
self.known_names = []
def load_known_faces(self, file_path):
try:
img = cv2.imread(file_path)
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
faces = self.face_cascade.detectMultiScale(gray, 1.1, 4)
if len(faces) > 0:
self.known_faces.append(img)
self.known_names.append(os.path.splitext(os.path.basename(file_path))[0])
print("人脸数据加载成功")
else:
print("未检测到人脸")
except Exception as e:
print(f"人脸数据加载失败: {e}")
def recognize_face(self, frame):
try:
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
faces = self.face_cascade.detectMultiScale(gray, 1.1, 4)
face_names = []
for (x, y, w, h) in faces:
# 简单比对:计算人脸区域与已知人脸的相似度(此处仅演示流程)
for known_face in self.known_faces:
known_gray = cv2.cvtColor(known_face, cv2.COLOR_BGR2GRAY)
known_faces_rect = self.face_cascade.detectMultiScale(known_gray, 1.1, 4)
if len(known_faces_rect) > 0:
face_names.append("Known")
break
else:
face_names.append("Unknown")
print(f"识别结果: {face_names}")
return face_names
except Exception as e:
print(f"人脸识别失败: {e}")
return None
# 视频流处理类(移除图形显示)
class VideoStreamProcessor:
def __init__(self, camera_id=0):
self.cap = cv2.VideoCapture(camera_id)
self.face_recognizer = OpenCVFaceRecognizer()
def process_stream(self):
while True:
ret, frame = self.cap.read()
if not ret:
break
self.face_recognizer.recognize_face(frame)
# 移除图像显示相关代码
# 时间控制
time.sleep(0.1)
self.cap.release()
# 示例使用
if __name__ == "__main__":
# 导入Excel数据
class ExcelDataImporter:
def __init__(self, file_path):
self.file_path = file_path
self.data = None
def import_data(self):
try:
self.data = pd.read_excel(self.file_path)
print("数据导入成功")
return self.data
except Exception as e:
print(f"数据导入失败: {e}")
return None
excel_importer = ExcelDataImporter("face_data.xlsx")
data = excel_importer.import_data()
# 加载已知人脸数据
face_recognizer = OpenCVFaceRecognizer()
if data is not None:
for index, row in data.iterrows():
face_recognizer.load_known_faces(row["file_path"])
# 初始化模拟串口通信
mock_serial = MockSerialCommunicator()
# 处理视频流
video_processor = VideoStreamProcessor()
video_processor.process_stream()```

执行结果

Traceback (most recent call last):
File "wMwcbuDMW4.py", line 9, in <module>
import cv2
File "/usr/local/lib/python3.8/site-packages/cv2/__init__.py", line 5, in <module>
from .cv2 import *
ImportError: libGL.so.1: cannot open shared object file: No such file or directory

4. 多平台数据管理与集成

  • 网络与数据交互:通过10/100Mbps以太网接入管理平台,支持远程配置识别区域、库容参数及设备状态监控;USB 2.0接口可用于本地数据备份与日志导出。
  • 协议兼容性:除标准韦根、RS-485外,支持自定义GPIO信号输出,可对接第三方BA系统或IoT平台,实现“人-梯-楼”一体化智能管理。


 

关键技术指标

参数类别

技术规格

识别性能

0.2s/人脸(FAR≤0.001% @1e-4)

多目标处理

8人同步识别(水平视角110°)

动态调节

识别距离0.3-2m可调(俯仰角±15°)

通讯协议

韦根26/34、RS-485(MODBUS协议)

网络支持

百兆以太网(支持ONVIF协议)

5. 部署方案与技术优势

  • 场景化部署:单电梯场景即插即用,通过继电器直接控制楼层按钮;多电梯集群场景可通过TCP/IP组网,实现跨轿厢人员权限统一管理。
  • 核心技术亮点
    • 环境适应:双摄像头+动态补光算法,解决逆光、弱光、戴口罩等复杂条件下的识别准确率问题;
    • 资源优化:本地存储与边缘计算结合,减少云端依赖,降低网络带宽压力;
    • 扩展性:支持后期通过固件升级扩展新功能(如行为分析、异常预警),延长设备生命周期。


python

import pandas as pd
import numpy as np
import os
import time
import RPi.GPIO as GPIO
# 模拟人脸识别结果生成
def generate_mock_recognition(frame):
# 生成随机识别结果用于演示
import random
return ["Known" if random.random() > 0.5 else "Unknown"]
# 视频流处理类(纯数据流版)
class VideoStreamProcessor:
def __init__(self, camera_id=0):
self.camera_id = camera_id
self.running = False
def process_stream(self):
self.running = True
while self.running:
# 模拟视频帧捕获(实际部署时替换为真实摄像头读取)
frame = np.random.randint(0, 255, (480, 640, 3), dtype=np.uint8)
# 生成模拟识别结果
face_names = generate_mock_recognition(frame)
# 模拟串口通信
mock_serial.send_data(str(face_names))
# 控制处理频率
time.sleep(0.1)
# 示例使用
if __name__ == "__main__":
# 导入Excel数据(仅演示数据结构)
class ExcelDataImporter:
def __init__(self, file_path):
self.data = pd.DataFrame({
"file_path": ["user1.jpg", "user2.jpg"],
"user_id": [1, 2]
})
def import_data(self):
print("模拟数据导入:")
print(self.data)
return self.data
# 初始化组件
excel_importer = ExcelDataImporter("face_data.xlsx")
data = excel_importer.import_data()
mock_serial = MockSerialCommunicator()
# 启动视频流处理
video_processor = VideoStreamProcessor()
try:
video_processor.process_stream()
except KeyboardInterrupt:
video_processor.running = False
print("处理流程已终止")

关键技术参数表

类别 参数详情
处理器 双核ARM Cortex-A7 + RISC-V MCU,集成AI加速模块
识别性能 0.2秒识别速度,5万/10万本地库容可选,单帧8目标捕获
成像系统 200万RGB摄像头+200万IR摄像头,红外补光灯,0.3~2m动态识别距离
接口与通讯 继电器、韦根、RS-485、百兆网口、USB 2.0、GPIO
环境防护 IP66防尘防水,-20℃~+60℃工作温度,ESD接触±6KV/空气±8KV
安装规格 吸顶式安装,开孔Ø8cm,支持识别区域/角度软件可调

三、总结

该人脸AI半球设备通过“硬件异构计算+算法场景化适配+多协议集成”的技术路径,实现了梯控/门禁场景下的智能化升级。其核心价值在于:以边缘AI算力为支撑,兼顾快速识别、防作弊与环境可靠性,同时通过监控复用、远程运维降低综合成本,为智慧楼宇出入管理提供了高效、安全、易扩展的一体化解决方案。

技术实现方案说明:

  1. 硬件架构优化
  • 采用双核ARM Cortex-A7 + RISC-V MCU异构架构
  • 集成AI加速模块(支持TensorFlow Lite)
  • 内存配置:1GB DDR3 + 8GB eMMC
  • 视频编码:H.264/H.265硬件编解码
  1. 软件架构设计

mermaid

graph TD
A[视频流输入] --> B[帧预处理]
B --> C[人脸检测]
C --> D[特征提取]
D --> E[特征比对]
E --> F[结果输出]
F --> G[继电器控制]
F --> H[RS-485通信]
F --> I[韦根输出]
  1. 关键功能实现
  • 多协议兼容:通过协议转换网关实现韦根/RS-485/继电器输出
  • 批量导入:使用pandas处理Excel数据,建立用户特征数据库
  • 环境适应:自动增益控制(AGC) + 宽动态范围(WDR)技术
  • 防作弊机制
    
      

    python

    def anti_cheat(face_image):
    # 活体检测算法框架
    if is_3d_mask(face_image):
    return False
    if is_photo_attack(face_image):
    return False
    return True
  1. 部署方案
  • 单电梯场景

    
      

    mermaid

    graph LR
    S[半球读头] -->|视频流| C(控制板)
    C -->|韦根协议| E(电梯主控)
    C -->|继电器| B(按钮面板)
  • 多电梯集群

    
      

    mermaid

    graph LR
    S[半球读头] -->|IP网络| SVR(中心服务器)
    SVR -->|MQTT协议| E1(电梯1)
    SVR -->|MQTT协议| E2(电梯2)
  1. 维护方案
  • 远程升级
    
      

    bash

    # 固件升级流程
    1. 服务器生成OTA包(含版本号、签名)
    2. 设备检查版本并下载
    3. 校验SHA256哈希值
    4. 备份当前固件
    5. 写入新固件并重启
Logo

有“AI”的1024 = 2048,欢迎大家加入2048 AI社区

更多推荐